Skip to main content
Log in

Prospective applications of thermally stable Dy3+ doped potassium zinc strontium borate (KZSB) glasses in w-LEDs

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this present work, Dysprosium (Dy3+) ions doped potassium zinc strontium borate (KZSB) glasses were synthesized via the melt-quench method. X-ray diffraction (XRD) study of the prepared glasses shows a broad hump and confirms the amorphous nature of the glasses. Various vibrational shoulders were seen in the Fourier transform infrared (FT-IR) spectrum. Thermo gravimetric analysis–differential scanning calorimetry (TGA–DSC) was carried out to check the thermal stability and corresponding weight loss behavior of the un-doped sample. Absorption spectra were recorded for un-doped as well as doped glasses in the UV–VIS–NIR region, and the corresponding optical band gap was calculated. The photoluminescence (PL) spectra of as-prepared Dy3+ doped KZSB glasses under 350 nm excitation show three peaks at 482, 575 and 665 nm corresponding to the transitions 4F9/2 → 6H15/2, 6H13/2 and 6H11/2. Commission Internationale de I'Eclairage (CIE) chromaticity coordinates calculated from the emission data lie in the white region. The photometric analysis of prepared glasses under UV lamp with 365 nm excitation also shows white emission. Temperature-dependent PL (TDPL) investigation demonstrates the superiority in thermal stability of the as-prepared glasses, with an activation energy of 0.232 eV estimated for 0.5 mol% (optimized concentration of rare earth ion) of Dy3+ ions. After analyzing the results of all studies, we propose to use these borate glasses doped with Dy3+ ions for white light-emitting diodes (w-LEDs) fabrication and other solid state lighting (SSL) applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author Prof. A.S. Rao. The data are not publicly available due to restrictions, e.g. their containing information that could compromise the privacy of research participants.

References

  1. R. Bajaj, A.S. Rao, G.V. Prakash, Photoluminescence down-shifting studies of thermally stable Eu3+ ions doped borosilicate glasses for visible red photonic device applications. J. Non Cryst. Solids 575, 121184 (2022). https://doi.org/10.1016/j.jnoncrysol.2021.121184

    Article  CAS  Google Scholar 

  2. P. Rekha Rani, M. Venkateswarlu, S. Mahamuda, K. Swapna, N. Deopa, A.S. Rao, Spectroscopic studies of Dy3+ ions doped barium lead alumino fluoro borate glasses. J. Alloys Compd. 787, 503–518 (2019). https://doi.org/10.1016/j.jallcom.2019.02.088

    Article  CAS  Google Scholar 

  3. J. Xi, G. Chen, F. Liu, F. Shang, J. Xu, C. Zhou, C. Yuan, Synthesis, microstructure and characterization of ultra-low permittivity CuO–ZnO–B2O–Li2O glass/Al2O3 composites for ULTCC application. Ceram. Int. 45, 24431–24436 (2019). https://doi.org/10.1016/j.ceramint.2019.08.166

    Article  CAS  Google Scholar 

  4. S. Kaur, A.K. Vishwakarma, N. Deopa, A. Prasad, M. Jayasimhadri, A.S. Rao, Spectroscopic studies of Dy3+ doped borate glasses for cool white light generation. Mater. Res. Bull. 104, 77–82 (2018). https://doi.org/10.1016/j.materresbull.2018.04.002

    Article  CAS  Google Scholar 

  5. Y. Gao, J. Qiu, D. Zhou, Investigation of optical properties: Eu with Al codoping in aluminum silicate glasses and glass-ceramics. J. Am. Ceram. Soc. 100, 2901–2913 (2017). https://doi.org/10.1111/jace.14807

    Article  CAS  Google Scholar 

  6. H. Wang, J. Liu, J. Zhai, B. Shen, Z. Pan, K. Yang, J. Liu, Effect of K2O content on breakdown strength and energy-storage density in K2O–BaO–Nb2O5–SiO2 glass-ceramics. Ceram. Int. 43, 4183–4187 (2017). https://doi.org/10.1016/j.ceramint.2016.12.042

    Article  CAS  Google Scholar 

  7. M. Monisha, N. Mazumder, G. Lakshminarayana, S. Mandal, S.D. Kamath, Energy transfer and luminescence study of Dy3+ doped zinc-aluminoborosilicate glasses for white light emission. Ceram. Int. 47, 598–610 (2021). https://doi.org/10.1016/j.ceramint.2020.08.167

    Article  CAS  Google Scholar 

  8. D. Ramachari, L. Rama Moorthy, C.K. Jayasankar, Spectral investigations of Sm3+-doped oxyfluorosilicate glasses. Mater. Res. Bull. 48, 3607–3613 (2013). https://doi.org/10.1016/j.materresbull.2013.05.081

    Article  CAS  Google Scholar 

  9. S.-F. Wang, Y.-F. Hsu, H.-C. Lu, S.-C. Lo, C.-S. Cheng, B2O3-free SiO2–Al2O3–SrO–La2O3–ZnO–TiO2 glass sealants for intermediate temperature solid oxide fuel cell applications. Int. J. Hydrog. Energy 37, 5901–5913 (2012). https://doi.org/10.1016/j.ijhydene.2011.12.121

    Article  CAS  Google Scholar 

  10. H. Gui, C. Li, C. Lin, Q. Zhang, Z. Luo, L. Han, J. Liu, T. Liu, A. Lu, Glass forming, crystallization, and physical properties of MgO–Al2O3–SiO2–B2O3 glass-ceramics modified by ZnO replacing MgO. J. Eur. Ceram. Soc. 39, 1397–1410 (2019). https://doi.org/10.1016/j.jeurceramsoc.2018.10.002

    Article  CAS  Google Scholar 

  11. Y. Gao, Y. Hu, P. Ren, D. Zhou, J. Qiu, Effect of Li+ ions on the enhancement upconversion and stokes emission of NaYF4:Tb, Yb co-doped in glass-ceramics. J. Alloys Compd. 667, 297–301 (2016). https://doi.org/10.1016/j.jallcom.2016.01.200

    Article  CAS  Google Scholar 

  12. A. Mills, High-brightness LEDs lighting up the future. III-Vs Rev. 14(1), 32–37 (2001). https://doi.org/10.1016/S0961-1290(01)89005-0

    Article  Google Scholar 

  13. Z. Lei, G. Xia, L. Ting, G. Xiaoling, L.Q. Ming, S. Guangdi, Color rendering and luminous efficacy of trichromatic and tetrachromatic LED-based white LEDs. Microelectron. J. 38, 1–6 (2007). https://doi.org/10.1016/j.mejo.2006.09.004

    Article  Google Scholar 

  14. L.I. Panlai, W. Zhijun, Y. Zhiping, G.U.O. Qinglin, A potential single-phased white-emitting LiBaBO3:Ce3+, Eu2+ phosphor for white LEDs. J. Rare Earths 28, 523–525 (2010). https://doi.org/10.1016/S1002-0721(09)60145-9

    Article  CAS  Google Scholar 

  15. C. Zhu, Y. Yang, X. Liang, S. Yuan, G. Chen, Rare earth ions doped full-color luminescence glasses for white LED. J. Lumin. 126, 707–710 (2007). https://doi.org/10.1016/j.jlumin.2006.10.028

    Article  CAS  Google Scholar 

  16. A. Aboalatta, J. Asad, M. Humaid, H. Musleh, S.K.K. Shaat, K. Ramadan, M.I. Sayyed, Y. Alajerami, N. Aldahoudi, Experimental investigation of zinc sodium borate glass systems containing barium oxide for gamma radiation shielding applications. Nucl. Eng. Technol. 53, 3058–3067 (2021). https://doi.org/10.1016/j.net.2021.04.002

    Article  CAS  Google Scholar 

  17. Y. Gao, Y. Hu, D. Zhou, J. Qiu, Effect of crystalline fraction on upconversion luminescence in Er3+/Yb3+ Co-doped NaYF4 oxyfluoride glass-ceramics. J. Eur. Ceram. Soc. 37, 763–770 (2017). https://doi.org/10.1016/j.jeurceramsoc.2016.09.036

    Article  CAS  Google Scholar 

  18. A. Kumar, Anu, M.K. Sahu, Ravita, S. Dahiya, N. Deopa, A. Kumar, R. Punia, A.S. Rao, Spectral characteristics of Tb3+ doped ZnF2–K2O–Al2O3–B2O3 glasses for epoxy free tricolor w-LEDs and visible green laser applications. J. Lumin. 244, 118676 (2021). https://doi.org/10.1016/j.jlumin.2021.118676

    Article  CAS  Google Scholar 

  19. Y. Gao, S. Murai, K. Shinozaki, J. Qiu, K. Tanaka, Phase-selective distribution of Eu2+and Eu3+ in oxide and fluoride crystals in glass-ceramics for warm white-light-emitting diodes. ACS Appl. Electron. Mater. 1, 961–971 (2019). https://doi.org/10.1021/acsaelm.9b00129

    Article  CAS  Google Scholar 

  20. Y. Gao, Y. Hu, P. Ren, D. Zhou, J. Qiu, Phase transformation and enhancement of luminescence in the Tb3+-Yb3+ co-doped oxyfluoride glass ceramics containing NaYF4 nanocrystals. J. Eur. Ceram. Soc. 36, 2825–2830 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.04.027

    Article  CAS  Google Scholar 

  21. S.A. Azizan, S. Hashim, N.A. Razak, M.H.A. Mhareb, Y.S.M. Alajerami, N. Tamchek, Physical and optical properties of Dy3+: Li2O–K2O–B2O3 glasses. J. Mol. Struct. 1076, 20–25 (2014). https://doi.org/10.1016/j.molstruc.2014.07.032

    Article  CAS  Google Scholar 

  22. G.N. Carneiro, H. Vargas, J.A. Sampaio, Thermo-optical and structural properties of barium aluminoborate glasses. J. Alloys Compd. 777, 1327–1333 (2019). https://doi.org/10.1016/j.jallcom.2018.11.044

    Article  CAS  Google Scholar 

  23. Y. Gao, S. Murai, K. Fujita, K. Tanaka, Visible and near-infrared photoluminescence enhanced by Ag nanoparticles in Sm3+-doped aluminoborate glass. Opt. Mater. (Amst) 86, 611–616 (2018). https://doi.org/10.1016/j.optmat.2018.10.018

    Article  CAS  Google Scholar 

  24. S. Mahamuda, K. Swapna, M. Venkateswarlu, A. Srinivasa Rao, S. Shakya, G. Vijaya Prakash, Spectral characterisation of Sm3+ ions doped Oxy-fluoroborate glasses for visible orange luminescent applications. J. Lumin. 154, 410–424 (2014). https://doi.org/10.1016/j.jlumin.2014.05.017

    Article  CAS  Google Scholar 

  25. T.Y. Lim, H. Wagiran, R. Hussin, S. Hashim, M.A. Saeed, Physical and optical properties of dysprosium ion doped strontium borate glasses. Phys. B Condens. Matter 451, 63–67 (2014). https://doi.org/10.1016/j.physb.2014.06.028

    Article  CAS  Google Scholar 

  26. A. Ichoja, S. Hashim, S.K. Ghoshal, Judd-Ofelt calculations for spectroscopic characteristics of Dy3+-activated strontium magnesium borate glass. Optik (Stuttg) 218, 165001 (2020). https://doi.org/10.1016/j.ijleo.2020.165001

    Article  CAS  Google Scholar 

  27. P.P. Pawar, S.R. Munishwar, R.S. Gedam, Physical and optical properties of Dy3+/Pr3+ Co-doped lithium borate glasses for W-LED. J. Alloys Compd. 660, 347–355 (2016). https://doi.org/10.1016/j.jallcom.2015.11.087

    Article  CAS  Google Scholar 

  28. M.A. Algradee, A.E.B. Alwany, M. Sultan, M. Elgoshimy, Q. Almoraisy, Physical and optical properties for Nd2O3 doped lithium-zinc-phosphate glasses. Optik (Stuttg) 142, 13–22 (2017). https://doi.org/10.1016/j.ijleo.2017.05.065

    Article  CAS  Google Scholar 

  29. H. George, N. Deopa, S. Kaur, A. Prasad, M. Sreenivasulu, M. Jayasimhadri, A.S. Rao, Judd-Ofelt parametrization and radiative analysis of Dy3+ ions doped Sodium Bismuth Strontium Phosphate glasses. J. Lumin. 215, 116693 (2019). https://doi.org/10.1016/j.jlumin.2019.116693

    Article  CAS  Google Scholar 

  30. X. Peng, Y. Pu, X. Du, J. Ji, S. Zhou, L. Zhang, The effect of glass network structure on interfacial polarization in Na2O–K2O–Nb2O5–SiO2–BaO glass-ceramics. J. Alloys Compd. 845, 155645 (2020). https://doi.org/10.1016/j.jallcom.2020.155645

    Article  CAS  Google Scholar 

  31. K. Swapna, S. Mahamuda, A.S. Rao, T. Sasikala, P. Packiyaraj, L.R. Moorthy, G.V. Prakash, Luminescence characterization of Eu3+ doped Zinc Alumino Bismuth Borate glasses for visible red emission applications. J. Lumin. 156, 80–86 (2014). https://doi.org/10.1016/j.jlumin.2014.07.022

    Article  CAS  Google Scholar 

  32. S. Mahamuda, K. Swapna, P. Packiyaraj, A. Srinivasa Rao, G. Vijaya Prakash, Lasing potentialities and white light generation capabilities of Dy3+ doped oxy-fluoroborate glasses. J. Lumin. 153, 382–392 (2014). https://doi.org/10.1016/j.jlumin.2014.03.009

    Article  CAS  Google Scholar 

  33. O.B. Aljewaw, M.K.A. Karim, H.M. Kamari, M.H.M. Zaid, A.A. Salim, M.H.A. Mhareb, Physical and spectroscopic characteristics of lithium-aluminium-borate glass: Effects of varying Nd2O3 doping contents. J. Non Cryst. Solids 575, 121214 (2022). https://doi.org/10.1016/j.jnoncrysol.2021.121214

    Article  CAS  Google Scholar 

  34. P.R. Rani, M. Venkateswarlu, S. Mahamuda, K. Swapna, N. Deopa, A.S. Rao, G.V. Prakash, Structural, absorption and photoluminescence studies of Sm3+ ions doped barium lead alumino fluoro borate glasses for optoelectronic device applications. Mater. Res. Bull. 110, 159–168 (2019). https://doi.org/10.1016/j.materresbull.2018.10.033

    Article  CAS  Google Scholar 

  35. V. Venkatramu, P. Babu, C.K. Jayasankar, T. Tröster, W. Sievers, G. Wortmann, Optical spectroscopy of Sm3+ ions in phosphate and fluorophosphate glasses. Opt. Mater. (Amst) 29, 1429–1439 (2007). https://doi.org/10.1016/j.optmat.2006.06.011

    Article  CAS  Google Scholar 

  36. S. Damodaraiah, V. Reddy Prasad, S. Babu, Y.C. Ratnakaram, Structural and luminescence properties of Dy3+ doped bismuth phosphate glasses for greenish yellow light applications. Opt. Mater. (Amst) 67, 14–24 (2017). https://doi.org/10.1016/j.optmat.2017.03.023

    Article  CAS  Google Scholar 

  37. C.R. Kesavulu, H.J. Kim, S.W. Lee, J. Kaewkhao, N. Chanthima, Y. Tariwong, Physical, vibrational, optical and luminescence investigations of Dy3+-doped yttrium calcium silicoborate glasses for cool white LED applications. J. Alloys Compd. 726, 1062–1071 (2017). https://doi.org/10.1016/j.jallcom.2017.08.091

    Article  CAS  Google Scholar 

  38. K. Swapna, S. Mahamuda, A. Srinivasa Rao, S. Shakya, T. Sasikala, D. Haranath, G. Vijaya Prakash, Optical studies of Sm3+ ions doped Zinc Alumino Bismuth Borate glasses. Spectrochim Acta Part A Mol. Biomol. Spectrosc. 125, 53–60 (2014). https://doi.org/10.1016/j.saa.2014.01.025

    Article  CAS  Google Scholar 

  39. T. Som, B. Karmakar, Nephelauxetic effect of low phonon antimony oxide glass in absorption and photoluminescence of rare-earth ions. Spectrochim Acta Part A Mol. Biomol. Spectrosc. 79, 1766–1782 (2011). https://doi.org/10.1016/j.saa.2011.05.054

    Article  CAS  Google Scholar 

  40. T. Suhasini, B.C. Jamalaiah, T. Chengaiah, J. Suresh Kumar, L. Rama Moorthy, An investigation on visible luminescence of Ho3+ activated LBTAF glasses. Phys. B Condens. Matter 407, 523–527 (2012). https://doi.org/10.1016/j.physb.2011.11.029

    Article  CAS  Google Scholar 

  41. N. Deopa, A.S. Rao, S. Mahamuda, M. Gupta, M. Jayasimhadri, D. Haranath, G.V. Prakash, Spectroscopic studies of Pr3+ doped lithium lead alumino borate glasses for visible reddish orange luminescent device applications. J. Alloys Compd. 708, 911–921 (2017). https://doi.org/10.1016/j.jallcom.2017.03.020

    Article  CAS  Google Scholar 

  42. Anu, N. Deopa, A.S. Rao, Structural and luminescence characteristics of thermally stable Dy3+ doped oxyfluoride strontium zinc borosilicate glasses for photonic device applications. Opt. Laser Technol. 154, 108328 (2022). https://doi.org/10.1016/j.optlastec.2022.108328

    Article  CAS  Google Scholar 

  43. S.S. Danewalia, K. Singh, S.K. Arya, Influence of vanadium oxide on non-isothermal crystallization kinetics of zinc lithium borate glasses. J. Non Cryst. Solids 553, 120471 (2021). https://doi.org/10.1016/j.jnoncrysol.2020.120471

    Article  CAS  Google Scholar 

  44. W.T. Carnall, P.R. Fields, K. Rajnak, Electronic energy levels of the trivalent lanthanide aquo ions. IV. Eu3+. J. Chem. Phys. 49, 4424–4442 (1968). https://doi.org/10.1063/1.1669893

    Article  CAS  Google Scholar 

  45. P. Taylor, J.C. Barthelat, P. Durand, A. Serafini, Non-empirical pseudopotentials for molecular calculations. Mol. Phys. 33, 159–180 (1977)

    Article  Google Scholar 

  46. S. Kaur, M. Jayasimhadri, A.S. Rao, A novel red emitting Eu3+ doped calcium aluminozincate phosphor for applications in w-LEDs. J. Alloys Compd. 697, 367–373 (2017). https://doi.org/10.1016/j.jallcom.2016.12.150

    Article  CAS  Google Scholar 

  47. M.K. Sahu, J. Mula, White light emitting thermally stable bismuth phosphate phosphor Ca3Bi(PO4)3:Dy3+ for solid-state lighting applications. J. Am. Ceram. Soc. 102, 6087–6099 (2019). https://doi.org/10.1111/jace.16479

    Article  CAS  Google Scholar 

  48. S. Selvi, G. Venkataiah, S. Arunkumar, G. Muralidharan, K. Marimuthu, Structural and luminescence studies on Dy3+ doped lead boro-telluro-phosphate glasses. Phys. B Condens. Matter 454, 72–81 (2014). https://doi.org/10.1016/j.physb.2014.07.018

    Article  CAS  Google Scholar 

  49. Q. Meng, B. Chen, W. Xu, Y. Yang, X. Zhao, W. Di, S. Lu, X. Wang, J. Sun, L. Cheng, T. Yu, Y. Peng, Size-dependent excitation spectra and energy transfer in Tb3+-doped Y2O3 nanocrystalline. J. Appl. Phys. 102, 1–7 (2007). https://doi.org/10.1063/1.2803502

    Article  CAS  Google Scholar 

  50. P. Du, X. Huang, J.S. Yu, Facile synthesis of bifunctional Eu3+-activated NaBiF4 red-emitting nanoparticles for simultaneous white light-emitting diodes and field emission displays. Chem. Eng. J. 337, 91–100 (2018). https://doi.org/10.1016/j.cej.2017.12.063

    Article  CAS  Google Scholar 

  51. S. Kaur, A.S. Rao, M. Jayasimhadri, Spectroscopic and photoluminescence characteristics of Sm3+ doped calcium aluminozincate phosphor for applications in w-LED. Ceram. Int. 43, 7401–7407 (2017). https://doi.org/10.1016/j.ceramint.2017.02.129

    Article  CAS  Google Scholar 

  52. I. Kumar, A.K. Gathania, Photoluminescence and quenching study of the Sm3+-doped LiBaPO4 phosphor. J. Mater. Sci. Mater. Electron. 33, 328–341 (2022). https://doi.org/10.1007/s10854-021-07301-7

    Article  CAS  Google Scholar 

  53. T. Srihari, C.K. Jayasankar, Fluorescence properties and white light generation from Dy3+-doped niobium phosphate glasses. Opt. Mater. (Amst) 69, 87–95 (2017). https://doi.org/10.1016/j.optmat.2017.04.001

    Article  CAS  Google Scholar 

  54. R. Bajaj, A.S. Rao, G.V. Prakash, Linear and nonlinear photoluminescence from thermally stable KYF4:Eu3+ cubic nanocrystals. J. Alloys Compd. 885, 160893 (2021). https://doi.org/10.1016/j.jallcom.2021.160893

    Article  CAS  Google Scholar 

  55. Poonam, Shivani, Anu, A. Kumar, M.K. Sahu, P.R. Rani, N. Deopa, R. Punia, A.S. Rao, Judd-Ofelt parameterization and luminescence characterization of Dy3+ doped oxyfluoride lithium zinc borosilicate glasses for lasers and w-LEDs. J. Non Cryst. Solids. 544, 120187 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120187

    Article  CAS  Google Scholar 

  56. C.S. McCamy, Correlated color temperature as an explicit function of chromaticity coordinates. Color Res. Appl. 17, 142–144 (1992). https://doi.org/10.1002/col.5080170211

    Article  Google Scholar 

  57. N. Deopa, S. Saini, S. Kaur, A. Prasad, A.S. Rao, Spectroscopic investigations on Dy3+ ions doped zinc lead alumino borate glasses for photonic device applications. J. Rare Earths 37, 52–59 (2019). https://doi.org/10.1016/j.jre.2018.04.013

    Article  CAS  Google Scholar 

  58. P. Babu, K.H. Jang, C.S. Rao, L. Shi, C.K. Jayasankar, V. Lavín, H.J. Seo, White light generation in Dy3+-doped oxyfluoride glass and transparent glass-ceramics containing CaF2 nanocrystals. Opt. Express 19, 1836–1841 (2011)

    Article  CAS  Google Scholar 

  59. S. Kaur, D. Arora, S. Kumar, G. Singh, S. Mohan, P. Kaur, Kriti, P. Kaur, D.P. Singh, Blue-yellow emission adjustability with aluminium incorporation for cool to warm white light generation in dysprosium doped borate glasses. J. Lumin. 202, 168–175 (2018). https://doi.org/10.1016/j.jlumin.2018.05.034

    Article  CAS  Google Scholar 

  60. Ravita, A.S. Rao, Effective energy transfer from Dy3+ to Tb3+ ions in thermally stable KZABS glasses for intense green emitting device applications. J. Lumin. 239, 118325 (2021). https://doi.org/10.1016/j.jlumin.2021.118325

    Article  CAS  Google Scholar 

  61. E.A. Rathnakumari, S.M.M. Kennedy, Synthesis and photoluminescence characteristics of the near white emitting Dy3+ ions activated NaMBi2x(PO4)3 [M: Ba/Ca/Ca0.5+Sr0.5/Sr/Sr0.5 + Ba0.5] phosphors. Optik (Stuttg) 275, 170601 (2023). https://doi.org/10.1016/j.ijleo.2023.170601

    Article  CAS  Google Scholar 

  62. A. Vidhi, A. Ankita, A. Anu, A.S. Rao, Spectroscopic characterizations of Dy3+ ions doped phosphate glasses for epoxy-free white LED applications. Opt. Mater. (Amst) 132, 112863 (2022). https://doi.org/10.1016/j.optmat.2022.112863

    Article  CAS  Google Scholar 

  63. M.K. Sahu, H. Kaur, B.V. Ratnam, J.S. Kumar, M. Jayasimhadri, Structural and spectroscopic characteristics of thermally stable Eu3+ activated barium zinc orthophosphate phosphor for white LEDs. Ceram. Int. 46, 26410–26415 (2020). https://doi.org/10.1016/j.ceramint.2020.07.263

    Article  CAS  Google Scholar 

  64. M.K. Sahu, M. Jayasimhadri, Conversion of blue emitting thermally stable Ca3Bi(PO4)3 host as a color tunable phosphor via energy transfer for luminescent devices. J. Lumin. 227, 117570 (2020). https://doi.org/10.1016/j.jlumin.2020.117570

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors Ms. Sheetal Kumari would like to thank the University Grants Commission (UGC), Government of India for providing her with Junior Research Fellowship (JRF) to carry out her research work at Delhi Technological University [1431/(CSIR-UGC NET JUNE 2019)].

Funding

Ms. Sheetal Kumari was supported by a Junior Research Fellowship (JRF) awarded by CSIR-UGC, Government of India [1431/(CSIR-UGC NET JUNE 2019)].

Author information

Authors and Affiliations

Authors

Contributions

SK: work plan, experimental work, manuscript writing. Anu: experimental help, data analysis. AP: data analysis, validation of results, manuscript writing. PR: experimental help, calculations. ASR: work plan, validation of results, manuscript corrections.

Corresponding author

Correspondence to A. S. Rao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, S., Anu, Prasad, A. et al. Prospective applications of thermally stable Dy3+ doped potassium zinc strontium borate (KZSB) glasses in w-LEDs. J Mater Sci: Mater Electron 34, 907 (2023). https://doi.org/10.1007/s10854-023-10272-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10272-6

Navigation