Skip to main content
Log in

Effect of Zr-doping on the structure and magnetic properties of YMnO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Effect of zirconium substitution on the structure and magnetic properties of YMnO3 ceramics were widely studied and discussed in this work. The crystal structure of Y1 − xZrxMnO3 (x = 0.00, 0.05, 0.10) is hexagonal, and the lattice parameters reduce with the increase of doping amount. The average of grain size decreases from 0.403 μm to 0.356 μm as the Zr addition rises through SEM analysis. The magnetization of Y1 − xZrxMnO3 increases as Zr doping concentration increased, and the spin glass state appears in the sample with x = 0.1 The magnetization evolution should be attributed to the Mn4+ ions appeared when Zr was introduced to the Y sites of YMnO3. The increased Mn4+ ion which is related to the interstitial oxygen anions led to the reduced effective magnetic moment. The Zr substitution may also have an effect on the magnetic frustration factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. C. Zhang, X. Zhang, Y. Sun, S. Liu, Atomistic simulation of Y-site substitution in multiferroic h-YMnO3. Phys. Rev. B 83(5), 054104 (2011)

    Article  Google Scholar 

  2. N. Fujimura, H. Sakata, D. Ito, T. Yoshimura, Yokota, Ferromagnetic and ferroelectric behaviors of A-site substituted YMnO3-based epitaxial thin films. J. Appl. Phys. 93(10), 6990–6992 (2003)

    Article  CAS  Google Scholar 

  3. O. Zemljak, D.L. Golic, M. Pocuca-Nesic, A. Dapcevic, P. Senjug, Titanium doped yttrium manganite: improvement of microstructural properties and peculiarities of multiferroic properties. J. Sol-Gel. Sci. Techn. 3, 103 (2022)

    Google Scholar 

  4. L.P. Chanu, S. Phanjoubam, Study on the structural and electrical properties of YMnO3 co-substituted with transition metal ions at Mn-site and their conduction mechanism. J. Mater. Sci: Mater. Electron. 33(9), 6107–6120 (2022)

    CAS  Google Scholar 

  5. O. Polat, M. Coskun, F.M. Coskun, Z. Durmus, M. Caglar, A. Turut, Os doped YMnO3 multiferroic: a study investigating the electrical properties through tuning the doping level. J. Alloy Comp. 752, 274–288 (2018)

    Article  CAS  Google Scholar 

  6. Q. Zou, Y. Ma, X. Wang, Z. Wang, H. Liu, C. Yang, Effect of zirconium substitution on the dielectric and magnetic properties of YMn0.8Fe0.2O3 multiferroic ceramics. J. Mater. Sci: Mater. Electron. 28(2), 2107–2112 (2017)

    CAS  Google Scholar 

  7. P. Saxena, A. Mishra, Structural and electrical properties of YMnO3 manganites: influence of Cr ion doping. J. Solid State Chem. 301, 122364 (2021)

    Article  CAS  Google Scholar 

  8. M. Muneeswaran, J.W. Jang, B.C. Choi, J.H. Jeong, N.V. Giridharan, Structural, optical and multiferroic properties of pure and Dy modified YMnO3. J. Mater. Sci: Mater. Electron. 28, 16788–16796 (2017)

    CAS  Google Scholar 

  9. F. Wan, X.J. Bai, K.K. Song, X. Lin, X.M. Han, J.B. Zheng, C.D. Cao, Structure and magnetism of Cr-doped h-YMnO3. J. Magn. Magn. Mater. 424, 371–375 (2017)

    Article  CAS  Google Scholar 

  10. D. Karoblis, A. Zarkov, E. Garskaite, K. Mazeika, D. Baltrunas, Niaura, Study of gadolinium substitution effects in hexagonal yttrium manganite YMnO3. Sci. Rep. 11(1), 1–14 (2021)

    Article  Google Scholar 

  11. L. Yang, Q. Duanmu, L. Hao, Z. Zhang, X. Wang, Y. Wei, H. Zhu, Ferrimagnetism and possible double perovskite structure in half Cr-doped YMn0.5Cr0.5O3. J. Alloy Comp. 570, 41–45 (2013)

    Article  CAS  Google Scholar 

  12. F. Wan, X.J. Bai, K.K. Song, X.M. Han, J.B. Zheng, X. Lin, C.D. Cao, Effect of Co substitution on magnetic and magnetocaloric properties in multiferroic hexagonal YMnO3. J. Mater. Sci: Mater. Electron. 28, 15819–15825 (2017)

    CAS  Google Scholar 

  13. P. Paul, A.K. Rajarajan, C.L. Prajapat, A.K. Debnath, T.C. Rao, Structural and magnetic properties of YMn1 – xGaxO3. AIP Conference Proceedings (2020)

  14. P. Paul, A.K. Rajarajan, A.K. Debnath, R. Rao, T.C. Rao, Valence fluctuation and magnetic frustration in Ga substituted YMnO3. J. Magn. Magn. Mater. 503, 166617 (2020)

    Article  CAS  Google Scholar 

  15. K.N. Rathod, B. Rajyaguru, S. Solanki, V.G. Shrimali, K. Sagapariya, J.H. Markna, Studies on structural and electrical properties of pure and doped h-YMnO3. AIP Conference Proceedings (2016)

  16. T. Katsufuji, M. Masaki, A. Machida, M. Moritomo, K. Kato, Nishibori, Crystal structure and magnetic properties of hexagonal RMnO3 (R = Y, Lu, and sc) and the effect of doping. Phys. Rev. B 66(13), 134434 (2002)

    Article  Google Scholar 

  17. E. Altin, S. Altunda, S. Altin, A. Bayri, Fabrication of Cr doped Na0.67Fe0.5Mn0.5O2 compounds and investigation of their structural, electrical, magnetic and electrochemical properties. J. Mater. Sci: Mater. Electron. 30, 17848–17855 (2019)

    CAS  Google Scholar 

  18. H. Sim, H. Kim, K. Park, M. Lilienblum, M. Fiebig, Doping effects on the ferroelectric transition of multiferroic Y (mn, Al/Ga)O3. Phys. Rev. B 98(8), 085132 (2018)

    Article  CAS  Google Scholar 

  19. B.B. Van Aken, J.W.G. Bos, R.A. de Groot, T.T. Palstra, Asymmetry of electron and hole doping in YMnO3. Phys. Rev. B 63(12), 125127 (2001)

    Article  Google Scholar 

  20. N. Jiang, X. Zhang, Atomistic simulation of Mn-site substitution in multiferroic h-YMnO3. J. Physics: Condens. Mat. 24(23), 235402 (2012)

    Google Scholar 

  21. P.R. Mandal, T.K. Nath, Oxygen-vacancy and charge hopping related dielectric relaxation and conduction process in orthorhombic gd doped YFe0.6Mn0.4O3 multiferroics. J. Alloy Comp. 628, 379–389 (2015)

    Article  CAS  Google Scholar 

  22. Y. Ma, Y. Chen, Z. Wang, X. Wang, H. Liu, Correlation between charge states and enhanced properties in Ti-substituted and Ti, Sr co-substituted Y (Mn0.8Fe0.2)O3 ceramics. J. Alloy Comp. 750, 781–787 (2018)

    Article  CAS  Google Scholar 

  23. J. Shukla, A. Mishra, Influence of Ba2+ doping on structural and electrical transport properties of YMnO3 ceramics. J. Supercond Nov Magn. 34(2), 451–459 (2021)

    Article  CAS  Google Scholar 

  24. A. Durán, C. Herbert, M. García-Guaderrama, J. Mata, G. Tavizón, Zr and Mo doped YMnO3: the role of dopants on the structural, microstructural, chemical state, and dielectric properties. Ceram. Int. 48(12), 17009–17019 (2022)

    Article  Google Scholar 

  25. R.K. Thakur, R. Thakur, S. Samatham, S. Kaurav, N. Ganesan, V. Gaur, N.K. Okram, G. S., Dielectric, magnetic, and thermodynamic properties of Y1 – xSrxMnO3 (x = 0.1 and 0.2). J. Appl. Phys. 112(10), 104115 (2012)

    Article  Google Scholar 

  26. S. Taran, B. Biswas, H.D. Yang, Structural, magnetic, and Ferroelectric Properties of Zr-Doped Y1 – xZrxCrO3 bulk Polycrystalline System. J. Supercond Nov Magn. 33(8), 2483–2491 (2020)

    Article  CAS  Google Scholar 

  27. K.N. Rathod, K. Thakrar, K. Gadani, Z. Joshi, D. Dhruv, H. Boricha, Structural, microstructural and dielectric behavior of sol-gel grown nanostructured Y0.95Zr0.05MnO3. Mater. Chem. Phys. 198, 200–208 (2017)

    Article  CAS  Google Scholar 

  28. Z.L.M. Botello, A. Montenegro-Hernández, L. Mogni, G.H. Gauthier, Study of the oxygen reduction reaction on pure and Zr-doped YMnO3+ δ SOFC electrode. Electrochim. Acta 365, 137332 (2021)

    Article  CAS  Google Scholar 

  29. Z.L.M. Botello, A. Montenegro, N.G. Osorio, M. Huvé, C. Pirovano, D.R. Smabraten, Pure and Zr-doped YMnO3+δ as a YSZ-compatible SOFC cathode: a combined computational and experimental approach. J. Mater. Chem. A 7(31), 18589–18602 (2019)

    Article  Google Scholar 

  30. Z.L.M. Botello, A. Caneiro, P. Roussel, G. Gauthier, Synthesis and preliminary study of pure and Zr-doped YMnO3 compounds as solid oxide fuel cells electrode. J. Alloy Comp. 690, 348–355 (2017)

    Article  Google Scholar 

  31. S. Roy, N. Ali, Charge transport and colossal magnetoresistance phenomenon in La1 – xZrxMnO3. J. Appl. Phys. 89(11), 7425–7427 (2001)

    Article  CAS  Google Scholar 

  32. A. Serdar. O. Erdinc, A. Emine, D. Serkan, A.B. Sevda, A., Investigations of the capacity fading mechanism of Na0.44MnO2 via ex situ XAS and magnetization measurements. Dalton Trans. 47, 17102–17108 (2018)

    Article  Google Scholar 

  33. S. Demirel, E. Oz, S. Altin, A. Bayri, E. Altinb, S. Avci, Enhancement of battery performance of LiMn2O4: correlations between electrochemical and magnetic properties. RSC Adv 6(49), 43823–43831 (2016)

    Article  CAS  Google Scholar 

  34. S. Avci. E. Altin. A. Bayri. O. Baglayan, Structural, magnetic, electrical and electrochemical properties of SrCoO2.5, Sr9Co2Mn5O21 and SrMnO3 compounds. Ceram. Int. 43, 14818–14826 (2017)

    Article  Google Scholar 

  35. S.H. Skjærvø, E.T. Wefring, S.K. Nesdal, N.H. Gaukås, G.H. Olsen, J. Glaum, Interstitial oxygen as a source of p-type conductivity in hexagonal manganites. Nat. Commun. 7(1), 1–8 (2016)

    Article  Google Scholar 

  36. K. Venkateswarlu, A.C. Bose, N. Rameshbabu, X-ray peak broadening studies of nano crystalline hydroxyapatite by Williamson-Hall analysis. Phys. B 405, 4256–4261 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51971180, 52271037, 51971179), Shenzhen Fundamental Research Program, China (JCYJ20210324122203010), Shaanxi Provincial Key Research and Development Program, China (2021KWZ-13), Shaanxi Provincial Basic Research Program of Natural Science, China (2020JQ-898, S2023-JC-ZD-0042), and Guangdong Provincial Science and Technology Program, China (2019B090905009).

Funding

Shaanxi Provincial Basic Research Program of Natural Science, 2020JQ-898, Feng Wan, 2023-JC-ZD-23, Chongde Cao, the National Natural Science Foundation of China, 51971180, Yaocen Wang, 52271037, Chongde Cao, 51971179, Chongde Cao, Shenzhen Fundamental Research Program, JCYJ20210324122203010, Chongde Cao, Shaanxi Provincial Key Research and Development Program, 2021KWZ-13, Chongde Cao, Guangdong Provincial Science and Technology Program, 2019B090905009, Chongde Cao.

Author information

Authors and Affiliations

Authors

Contributions

FW: Writing-original draft, Investigation, Data curation, Funding acquisition, XB: Conceptualization, Methodology, YW: Supervision, Funding acquisition, ZH: Writing-review & editing, LG: Software, JL: Resources, NSP: Writing-review & editing, CC: Funding acquisition, Resources, Writing-review & editing.

Corresponding authors

Correspondence to Jinlin Li or Chongde Cao.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

We would like to declare on behalf of my co-authors that the work described was original research that has not been published previously, and not under consideration for publication elsewhere, in whole or in part .

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, F., Bai, X., Wang, Y. et al. Effect of Zr-doping on the structure and magnetic properties of YMnO3 ceramics. J Mater Sci: Mater Electron 34, 926 (2023). https://doi.org/10.1007/s10854-023-10259-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10259-3

Navigation