Skip to main content
Log in

Physical, mechanical, morphological and electrochemical performance of poly (propylene carbonate) based blend polymer electrolyte

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A solid polymer electrolyte is synthesized by blending Poly (propylene carbonate) (PPC) with Poly (methyl methacrylate) (PMMA), where Lithium bis(oxalate)borate (LIBOB) is used as a lithium-ion source. The electrical and physical properties of the individual polymer electrolytes tend to increase with the addition of Poly (methyl methacrylate) into Poly (propylene carbonate) matrix. The blend polymer electrolyte of PPC-PMMA matrix with (LIBOB) exhibits improved ionic conductivity of 1.44 × 10−4 Scm−1 at room temperature, which is higher than their respective purest form by orders of magnitude at the same room temperature, and it also exhibits remarkable electrochemical stability up to 5.5 V. The thermal stability of the PPC-PMMA blend polymer electrolyte is found to be 220˚C from the TG/DTA analysis. Some of the other characteristic studies like X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscope (SEM), Mechanical analysis, and Atomic force microscope were also carried out to find the aptness of the synthesised blended polymer for battery application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. K. Sashmitha, M.U. Rani, Polym. Bull. 80, 89 (2022)

    Article  Google Scholar 

  2. A. Arya, A.L. Sharma, Ion 23, 497 (2017)

    Article  CAS  Google Scholar 

  3. I. Arunkumar, A.R. Kim, S.H. Lee, D.J. Yoo, Int. J. Hydrogen Energy (2022). https://doi.org/10.1016/j.ijhydene.2022.10.184

    Article  Google Scholar 

  4. A.R. Kim, M. Vinothkannan, D.J. Yoo, Bull. Korean Chem. Soc. 39, 913 (2018)

    Article  CAS  Google Scholar 

  5. M. Vinothkannan, A.R. Kim, D.J. Yoo, RSC Adv. 11, 18351 (2021)

    Article  CAS  Google Scholar 

  6. A. Manuel Stephan, K.S. Nahm, Polymer (Guildf) 47, 5952 (2006)

    Article  Google Scholar 

  7. L. Long, S. Wang, M. Xiao, Y. Meng, J. Mater. Chem. A 4, 10038 (2016)

    Article  CAS  Google Scholar 

  8. A.R. Kim, M. Vinothkannan, D.J. Yoo, Int. J. Hydrogen Energy 42, 4349 (2017)

    Article  CAS  Google Scholar 

  9. X.B. Cheng, C.Z. Zhao, Y.X. Yao, H. Liu, Q. Zhang, Chem 5, 74 (2019)

    Article  CAS  Google Scholar 

  10. E. Umeshbabu, B. Zheng, Y. Yang, Electrochem. Energy Rev. 2, 199 (2019)

    Article  CAS  Google Scholar 

  11. Y. Wang, E. Sahadeo, G. Rubloff, C.F. Lin, S.B. Lee, J. Mater. Sci. 54, 3671 (2019)

    Article  CAS  Google Scholar 

  12. M. Dirican, C. Yan, P. Zhu, X. Zhang, Mater. Sci. Eng. R Rep. 136, 27 (2019)

    Article  Google Scholar 

  13. Y.C. Jung, S.M. Lee, J.H. Choi, S.S. Jang, D.W. Kim, J. Electrochem. Soc. 162, A704 (2015)

    Article  CAS  Google Scholar 

  14. M. Armand, Solid State Ion. 9–10, 745 (1983)

    Article  Google Scholar 

  15. X. Huang, J. Huang, J. Wu, X. Yu, Q. Gao, Y. Luo, H. Hu, RSC Adv. 5, 52978 (2015)

    Article  CAS  Google Scholar 

  16. G.A. Luinstra, Polym. Rev. 48, 192 (2008)

    Article  CAS  Google Scholar 

  17. Y.Z.M.M.Z. Pang, J.J. Qiao, J. Jiao, S.J. Wang, M. Xiao, J. Appl. Polym. Sci. 107, 2854 (2007)

    Article  Google Scholar 

  18. Y. Jiugao, F. Jianming, W. Ning, Z. Xingxiang, Polym. Int. 57, 1027 (2008)

    Article  Google Scholar 

  19. X.L. Wang, R.K.Y. Li, Y.X. Cao, Y.Z. Meng, Mater. Des. 28, 1934 (2007)

    Article  CAS  Google Scholar 

  20. M. Gao, Z. Ren, S. Yan, J. Sun, X. Chen, J. Phys. Chem. B 116, 9832 (2012)

    Article  CAS  Google Scholar 

  21. Q.F. Meijun, F. Yao, H. Mai, N. Deng, K. Ning, Wang, J. Appl. Polym. Sci. 120, 3565 (2011)

    Article  Google Scholar 

  22. X.H. Li, S.C. Tjong, Y.Z. Meng, Q. Zhu, J. Polym. Sci. Part. B Polym. Phys. 41, 1806 (2003)

    Article  CAS  Google Scholar 

  23. J. Qiao, F. Du, M. Pang, M. Xiao, S. Wang, Y. Meng, J. Wuhan Univ. Technol. Mater. Sci. Ed. 23, 362 (2008)

    Article  CAS  Google Scholar 

  24. X. Shi, Z. Gan, Eur. Polym. J. 43, 4852 (2007)

    Article  CAS  Google Scholar 

  25. J. Bian, X.W. Wei, H.L. Lin, S.J. Gong, H. Zhang, Z.P. Guan, Polym. Degrad. Stab. 96, 1833 (2011)

    Article  CAS  Google Scholar 

  26. J. Gao, F. Chen, K. Wang, H. Deng, Q. Zhang, H. Bai, Q. Fu, J. Mater. Chem. 21, 17627 (2011)

    Article  CAS  Google Scholar 

  27. W. Chen, M. Pang, M. Xiao, S. Wang, L. Wen, Y. Meng, J. Reinf Plast. Compos. 29, 1545 (2010)

    Article  CAS  Google Scholar 

  28. J. Gao, F. Chen, K. Wang, H. Deng, Q. Zhang, H. Bai, Fu, Qiang J. Mater. Chem. 21, 17627 (2011)

    Article  CAS  Google Scholar 

  29. D. Wu, J. He, M. Zhang, P. Ni, X. Li, J. Hu, J. Power Sources 290, 53 (2015)

    Article  CAS  Google Scholar 

  30. W. Li, M. Yuan, M. Yang, Eur. Polym. J. 42, 1396 (2006)

    Article  CAS  Google Scholar 

  31. J.P. Sharma, S.S. Sekhon, Solid State Ion. 178, 439 (2007)

    Article  CAS  Google Scholar 

  32. N. Shukla, A.K. Thakur, Ionics (Kiel) 15, 357 (2009)

    Article  CAS  Google Scholar 

  33. M. Deka, A. Kumar, J. Solid State Electrochem. 14, 1649 (2010)

    Article  CAS  Google Scholar 

  34. A. Sil, R. Sharma, S. Ray, Surf. Coat. Technol. 271, 201 (2015)

    Article  CAS  Google Scholar 

  35. Y. Hu, Z. Wang, X. Huang, L. Chen, Solid State Ion. 175, 277 (2004)

    Article  CAS  Google Scholar 

  36. S. Seki, M.A.B.H. Susan, T. Kaneko, H. Tokuda, A. Noda, M. Watanabe, J. Phys. Chem. B 109, 3886 (2005)

    Article  CAS  Google Scholar 

  37. S.H. Kim, K.H. Lee, J.Y. Chu, A.R. Kim, D.J. Yoo, Polymer (Basel) 12, 1 (2020)

    CAS  Google Scholar 

  38. A.R. Kim, M.B. Poudel, J.Y. Chu, M. Vinothkannan, R. Santhosh Kumar, N. Logeshwaran, B.H. Park, M.K. Han, D.J. Yoo, Compos. Part. B Eng. 254, 110558 (2023)

    Article  CAS  Google Scholar 

  39. M. Ulaganathan, S. Rajendran, J Appl Electrochem. 41, 83 (2011)

    Article  CAS  Google Scholar 

  40. S. Selvasekarapandian, R. Baskaran, O. Kamishima, J. Kawamura, T. Hattori, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 65, 1234 (2006)

    Article  CAS  Google Scholar 

  41. M.M.E. Jacob, A.K. Arof, Electrochim. Acta 45, 1701 (2000)

    Article  CAS  Google Scholar 

  42. S. Rajendran, M. Ulaganathan, J. Appl. Polym. Sci. 118, 646 (2010)

    Google Scholar 

  43. X. Huang, D. Xu, W. Chen, H. Yin, C. Zhang, Y. Luo, X. Yu, J. Electroanal. Chem. 804, 133 (2017)

    Article  CAS  Google Scholar 

  44. P.N. Didwal, Y.N. Singhbabu, R. Verma, B.J. Sung, G.H. Lee, J.S. Lee, D.R. Chang, C.J. Park, Energy Storage Mater. 37, 476 (2021)

    Article  Google Scholar 

  45. Y. Ding, P. Zhang, Z. Long, Y. Jiang, F. Xu, W. Di, J. Memb. Sci. 329, 56 (2009)

    Article  CAS  Google Scholar 

  46. S. Jayanthi, B. Sundaresan, Ionics (Kiel) 21, 705 (2015)

    Article  CAS  Google Scholar 

  47. Z. Wang, H. Gu, Z. Wei, J. Wang, X. Yao, S. Chen, Ionics (Kiel) 25, 907 (2019)

    Article  CAS  Google Scholar 

  48. M.A. Sibeko, M.L. Saladino, F. Armetta, A. Spinella, A.S. Luyt, Emergent Mater. 2, 363 (2019)

    Article  CAS  Google Scholar 

  49. M.A. Navarra, A. Tsurumaki, F.M. Vitucci, A. Paolone, O. Palumbo, S. Panero, Batter. Supercaps 3, 1112 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank Dr. Kuraganti Vasu, VIT, Vellore for providing Electrochemical Workstation facility.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

URM: Conceptualization, Visualization, Supervision, Validation, Reviewing. SK: Writing—Reviewing and Editing.

Corresponding author

Correspondence to M. Usha Rani.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sashmitha, K., Rani, M.U. Physical, mechanical, morphological and electrochemical performance of poly (propylene carbonate) based blend polymer electrolyte. J Mater Sci: Mater Electron 34, 850 (2023). https://doi.org/10.1007/s10854-023-10258-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10258-4

Navigation