Skip to main content

Advertisement

Log in

Third-order nonlinear optical properties of mono and biphasic β-tricalcium phosphate in continuous wave regime

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

β-Tricalcium phosphate (β-TCP) powders were prepared using wet chemical method and the powders are heat-treated at different temperatures (800 to 1300 °C). The quantitative Rietveld refinement analysis reveals ~ 99% of mono β-TCP phase in the sample heat-treated at 1200 °C and sample heat-treated at 1300 °C contains ~ 93.4% of β-TCP phase and ~ 6.0% of α-TCP. The vibrational modes of PO43− groups namely ν1, ν2, ν3 and ν4 were characterized using FTIR and laser Raman studies. SEM analysis illustrates that the particle sizes are in the micrometer range and the samples are crystalline in nature. SEM studies also highlights the presence of additional smaller granules of α-TCP over the large crystallites of β-TCP for the sample heat-treated at 1300 °C. In the photoluminescence spectra, multiple emission bands are observed in the region between 340 and 540 nm and are attributed to the non-radiative recombination processes due to thermal effects. The optical nonlinear absorption coefficient and optical nonlinear refractive index of the β-TCP samples were examined using the Z-scan technique. A peak nonlinear refractive index and nonlinear absorption coefficient values of 10−4 cm2/W and 10−1 cm/W, respectively, were observed from the Z-scan studies. The self-defocusing effect has been observed in the present samples under continuous wave illumination which can be useful to identify their candidature in optical limiting applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included within the article.

References

  1. L. Wang, G.H. Nancollas et al., Calcium orthophosphates: crystallization and dissolution. Chem. Rev. 108(11), 4628–4669 (2008). https://doi.org/10.1021/cr0782574

    Article  CAS  Google Scholar 

  2. Y. Liu, D. Hou, G. Wang, A simple wet chemical synthesis and characterization of hydroxyapatite nanorods. Mater. Chem. Phys. 86, 69–73 (2004). https://doi.org/10.1016/j.matchemphys.2004.02.009

    Article  CAS  Google Scholar 

  3. G. Daculsi, O. Laboux et al., Current state of the art of biphasic calcium phosphate bioceramics. J. Mater. Sci. Mater. Med. 14, 195–200 (2003). https://doi.org/10.1023/A:1022842404495

    Article  CAS  Google Scholar 

  4. S. Klébert, C. Balázsi, K. Balázsi, E. Bódis, P. Fazekas, A.M. Keszler, J. Szépvölgyi, Z. Károly et al., Spark plasma sintering of graphene reinforced hydroxyapatite composites. Ceram. Int. 41(3), 3647–3652 (2015). https://doi.org/10.1016/j.ceramint.2014.11.033

    Article  CAS  Google Scholar 

  5. Y. Li, W. Weng, K.C. Tam et al., Novel highly biodegradable biphasic tricalcium phosphates composed of α-tricalcium phosphate and β-tricalcium phosphate. Acta Biomater. 3(2), 251–254 (2007). https://doi.org/10.1016/j.actbio.2006.07.003

    Article  CAS  Google Scholar 

  6. R. Famery, N. Richard, P. Boch et al., Preparation of α-and β-tricalcium phosphate ceramics, with and without magnesium addition. Ceram. Int. 20(5), 327–336 (1994). https://doi.org/10.1016/0272-8842(94)90050-7

    Article  CAS  Google Scholar 

  7. S.V. Dorozhkin, Calcium orthophosphate cements for biomedical application. J. Mater. Sci. 43(9), 3028–3057 (2008). https://doi.org/10.1007/s10853-008-2527-z

    Article  CAS  Google Scholar 

  8. Y. Liu, Z. Shen et al., Dehydroxylation of hydroxyapatite in dense bulk ceramics sintered by spark plasma sintering. J. Eur. Ceram. Soc. 32(11), 2691–2696 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.02.025

    Article  CAS  Google Scholar 

  9. Y.W. Gu, N.H. Loh, K.A. Khor, S.B. Tor, P. Cheang et al., Spark plasma sintering of hydroxyapatite powders. Biomaterials 23(1), 37–43 (2002). https://doi.org/10.1016/S0142-9612(01)00076-X

    Article  CAS  Google Scholar 

  10. W. Suchanek, M. Yashima, M. Kakihana, M. Yoshimura et al., Hydroxyapatite ceramics with selected sintering additives. Biomaterials 18, 923–933 (1997). https://doi.org/10.1016/S0142-9612(97)00019-7

    Article  CAS  Google Scholar 

  11. M.A. Fanvich, J.M. Portolpoez et al., Influence of temperature and additives on the microstructure and sintering behavior of hydroxyapatites with different Ca/P ratios. J. Mater. Sci. Mater. Med. 9, 53–60 (1998). https://doi.org/10.1023/A:1008834712212

    Article  Google Scholar 

  12. T. Kanazawa, T. Umegaki, K. Yamashita Monma, H. Hiramatsu et al., T Effects of additives on sintering and some properties of calcium phosphates with various Ca/P ratios. J. Mater. Sci. 26, 417–422 (1991). https://doi.org/10.1007/BF00576536

    Article  CAS  Google Scholar 

  13. A. Rout, S. Agarwal et al., Structural, electronic and optical properties of Ca6–xNa2Y2(SiO4)6(OH)2:Dy3+ hydroxyapatite compound. Optik 249, 168217 (2022). https://doi.org/10.1016/j.ijleo.2021.168217

    Article  CAS  Google Scholar 

  14. M. Bohner, Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury 31, 37–47 (2000). https://doi.org/10.1016/S0020-1383(00)80022-4

    Article  Google Scholar 

  15. G. Heimeke, Biomaterials hightlights the “state of the art” research news. Adv. Mater. 2, 45–51 (1990). https://doi.org/10.1002/adma.19900020110

    Article  Google Scholar 

  16. S.V. Dorozhkin, Bioceramics of calcium orthophosphates. Biomaterials 31, 1465–1485 (2010). https://doi.org/10.1016/j.biomaterials.2009.11.050

    Article  CAS  Google Scholar 

  17. S. KAlmodia, S. Goenka, T. Laha, D. Lahiri, B. Basu, K. Balani, Microstructure, mechanical properties and in vitro biocompatibility of spark plasma sintered hydroxyl apatite-aluminium oxide-carbon nanotube composite. Mater. Sci. Eng. C Mater. Biol. Appl. 30, 1162–1169 (2006). https://doi.org/10.1016/j.msec.2010.06.009

    Article  CAS  Google Scholar 

  18. K.P. Tank, K.S. Chudasama, V.S. Thaker, M.J. Joshi et al., Cobalt-doped nanohydroxyapatite: synthesis, characterization, antimicrobial and hemolytic studies. J. Nanoparticle Res. 15, 1–11 (2013). https://doi.org/10.1007/s11051-013-1644-z

    Article  CAS  Google Scholar 

  19. J.L. Bredas, C. Adant, P. Tackx, A. Persoons, B.M. Pierce et al., Third-order nonlinear optical response in organic materials: theoretical and experimental aspects. Chem. Rev. 94, 243–278 (1994). https://doi.org/10.1021/cr00025a008

    Article  CAS  Google Scholar 

  20. H.S. Nalwa, Organic materials for third-order nonlinear optics. Adv. Mater. 5, 341–358 (1993). https://doi.org/10.1002/adma.19930050504

    Article  CAS  Google Scholar 

  21. K.D. Babu, K. Murali, N. Karthikeyan, S. Karuppusamy et al., Investigation of optical limiting and third-order optical nonlinear properties of 2-Nitroaniline by Z-scan and f-scan techniques. Laser Phys. 29, 095401 (2019). https://doi.org/10.1088/1555-6611/ab2c68

    Article  CAS  Google Scholar 

  22. S.P. Karna, G.B. Talapatra, P.N. Prasad et al., Dispersion of linear and nonlinear optical properties of benzene: an abinitio time-dependent coupled‐perturbed hartree–fock study. J. Chem. Phys. 95, 5873–5881 (1991). https://doi.org/10.1063/1.461608

    Article  CAS  Google Scholar 

  23. T.. Agag, A.. Akelah et al., Polybenzoxazine-clay nanocomposites, in Handbook of benzoxazine resins. (Elsevier publishers, Amsterdam, 2011), pp.495–516

    Chapter  Google Scholar 

  24. L.. Wang, P.. Yang et al., Nanostructured scaffold and its bioactive potentials in bone tissue engineering, in Nanobiomaterials in hard tissue Engineering. (William Andrew Publishing, Norwich, 2016), pp.241–270. https://doi.org/10.1016/B978-0-323-42862-0.00008-0

    Chapter  Google Scholar 

  25. N. Kabilan, K. Dinesh Babu, N. Karthikeyan, K. Chinnakali et al., Optical nonlinear properties of hydroxyapatite based materials. Optik  265, 169562 (2022). https://doi.org/10.1016/j.ijleo.2022.169562

    Article  CAS  Google Scholar 

  26. K. Salma, L. Berzina-Cimdina, N. Borodajenko et al., Calcium phosphate bioceramics prepared from wet chemically precipitated powders. Process. Appl. Ceram. 4(1), 45–51 (2010). https://doi.org/10.2298/PAC1001045S

    Article  CAS  Google Scholar 

  27. A. Farzadi, M. Solati-Hashjin, F. Bakhshi, A. Aminian et al., Synthesis and characterization of hydroxyapatite/β-tricalcium phosphate nanocomposites using microwave irradiation. Ceram. Int. 37(1), 65–71 (2011). https://doi.org/10.1016/j.ceramint.2010.08.021

    Article  CAS  Google Scholar 

  28. R. Ghosh, R. Sarkar et al., Synthesis and characterization of sintered beta-tricalcium phosphate: a comparative study on the effect of preparation route. Mater. Sci. Eng. C 67, 345–352 (2016). https://doi.org/10.1016/j.msec.2016.05.029

    Article  CAS  Google Scholar 

  29. B.H. Toby, R.B. Von Dreele et al., GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 46(2), 544–549 (2013). https://doi.org/10.1107/S0021889813003531

    Article  CAS  Google Scholar 

  30. I.R. Gibson, I. Rehman, S.M. Best et al., Characterization of the transformation from calcium-deficient apatite to β-tricalcium phosphate. J. Mater. Sci. Mater. Med. (2000). https://doi.org/10.1023/A:1008961816208

    Article  Google Scholar 

  31. M. Yashima, A. Sakai, T. Kamiyama, A. Hoshikawa et al., Crystal structure analysis of β-tricalcium phosphate Ca3 (PO4) 2 by neutron powder diffraction. J. Solid State Chem. 175, 272–277 (2003). https://doi.org/10.1016/S0022-4596(03)00279-2

    Article  CAS  Google Scholar 

  32. A. Jillavenkatesa, R.A. Condrate Sr et al., The infrared and Raman spectra of β-and α-tricalcium phosphate (Ca3 (PO4) 2). Spectrosc. Lett. 31(8), L619–L1634 (1998). https://doi.org/10.1080/00387019808007439

    Article  Google Scholar 

  33. R.G. Carrodeguas, S. De Aza et al., α-Tricalcium phosphate: synthesis, properties and biomedical applications. Acta. Biomater. 7, 3536–3546 (2011). https://doi.org/10.1016/j.actbio.2011.06.019

    Article  CAS  Google Scholar 

  34. D.G. Nelson, J.D. Featherstone, J.F. Duncan, T.W. Cutress et al., Paracrystalline disorder of biological and synthetic carbonate-substituted apatites. Calc. Tiss. Int. 34, 69 (1982). https://doi.org/10.1177/00220345820610111301

    Article  CAS  Google Scholar 

  35. R.Z. Legeros, G. Kijkowska, J.P. Legeros, T. Abergas, H. Bleiwas, CO3 for OH (type A) and CO3 for PO4 (type B) substitutions in precipitated carbonate apatites. J. Dent. Res. 66, 190 (1987)

    Google Scholar 

  36. J.C. Elliott, D.W. Holcomb, R.A. Young, Infrared determination of the degree of substitution of hydroxyl by carbonate ions in human dental enamel  calc. Tiss. Int. 37, 372 (1985). https://doi.org/10.1007/BF02553704

    Article  CAS  Google Scholar 

  37. R. Cuscó, F. Guitián, S. De Aza, L. Artus et al., Differentiation between hydroxyapatite and β-tricalcium phosphate by means of µ-Raman spectroscopy. J. Eur. Ceram. Soc. 18, 1301–1305 (1998). https://doi.org/10.1016/S0955-2219(98)00057-0

    Article  Google Scholar 

  38. V. Anbarasu, P.M. Md Gazzali, T. Karthik, A. Manigandan, K. Sivakumar et al., Effect of divalent cation substitution in the magnetoplumbite structured BaFe12O19 system. J. Mater. Sci. Mater. Electron. 24, 916–926 (2013). https://doi.org/10.1007/s10854-012-0850-2

    Article  CAS  Google Scholar 

  39. X. Wang, P.H. Hao, D. Huang, F.L. Zhang, M. Yang, M.R. Yu et al., Origin of multiple-peak photoluminescence spectra of light-emitting porous silicon. Phys. Rev. B 50, 12230 (1994). https://doi.org/10.1103/PhysRevB.50.12230

    Article  CAS  Google Scholar 

  40. G. Gonzalez, C. Costa-Vera, L.J. Borrero, D. Soto, L. Lozada, J.I. Chango, J.C. Diaz, L. Lascano et al., Effect of carbonates on hydroxyapatite self-activated photoluminescence response. J. Lumin. 195, 385–395 (2018). https://doi.org/10.1016/j.jlumin.2017.11.058

    Article  CAS  Google Scholar 

  41. H. Nishikawa, Thermal behavior of hydroxyapatite in structural and spectrophotometric characteristics. Mater. Lett. 50, 364–370 (2001). https://doi.org/10.1016/S0167-577X(01)00318-4

    Article  CAS  Google Scholar 

  42. H. Wang, J. Yu, J. Li, X. Cheng, Z. Huang et al., The room temperature photoluminescence properties of Eu 3+-doped bi-phase calcium phosphate under visible light. J. Mater. Sci. 45, 1237–1241 (2010). https://doi.org/10.1007/s10853-009-4072-9

    Article  CAS  Google Scholar 

  43. S. Chand, R. Mehra, V. Chopra et al., Recent advancements in calcium based phosphate materials for luminescence applications. J. Lumin. 252, 119383 (2022). https://doi.org/10.1016/j.jlumin.2022.119383

    Article  CAS  Google Scholar 

  44. M. Sheik-Bahae, A.A. Said, E.W. Van Stryland et al., High-sensitivity, single-beam n2 measurements. Opt. Lett. 14, 955–957 (1989). https://doi.org/10.1364/OL.14.000955

    Article  CAS  Google Scholar 

  45. M.M. Ara, Z. Dehghani, S. Iranizad et al., Synthesis, characterization and single-beam Z-scan measurement of the third-order optical nonlinearities of ZnO nano-particles. Int. J. Mod. Phys. B 22, 3165–3171 (2008). https://doi.org/10.1142/S0217979208048061

    Article  CAS  Google Scholar 

  46. B. Yao, L. Ren, X. Hou et al., Z-scan theory based on a diffraction model. J. Opt. Soc. Am. B 20, 1290–1294 (2003). https://doi.org/10.1364/JOSAB.20.001290

    Article  CAS  Google Scholar 

  47. G. Vinitha, A. Ramalingam, P.K. Palanisamy et al., Nonlinear studies of pararosanilin dye in liquid and solid media. Spectrochim Acta – A: Mol. Biomol. Spectrosc. 68, 1–5 (2007). https://doi.org/10.1016/j.saa.2006.10.042

    Article  CAS  Google Scholar 

  48. S. Aithal, P.S. Aithal, G.K. Bhat et al., CW optical limiting study in disperse yellow dye-doped PMMA-MA polymer films. Int. J. Appl. Sci. 5, 129–146 (2016). https://doi.org/10.21013/jas.v5.n3.p4

    Article  CAS  Google Scholar 

  49. A.N. Dhinaa, P.K. Palanisamy, K. Murali et al., Realization of all-optical AND–OR logic gates using the Z-scan method. Laser Phys. Lett. 10, 105402 (2013). https://doi.org/10.1088/1612-2011/10/10/105402

    Article  CAS  Google Scholar 

  50. K.D. Babu, P. Philominathan, K. Murali et al., Third-order optical nonlinearities of spray deposited l-glutamic acid thin films using Z-scan and f-scan. J. Mater. Sci. Mater. Electron. 31, 17351–17364 (2020). https://doi.org/10.1007/s10854-020-04291-w

    Article  CAS  Google Scholar 

  51. R.A. Ganeev, A.I. Ryasnyansky, V.I. Redkorechev, K. Fostiropoulos, G. Priebe, T. Usmanov et al., Variations of nonlinear optical characteristics of C60 thin films at 532 nm. Opt. Commun. 225, 131–139 (2003). https://doi.org/10.1016/j.optcom.2003.07.019

    Article  CAS  Google Scholar 

  52. T. Zhang, W. Zhang, Y. Chen, J. Yin et al., Third-order optical nonlinearities of lead-free (Na1 – xKx) 0.5 Bi0. 5TiO3 thin films. Opt. Commun. 281, 439–443 (2008). https://doi.org/10.1016/j.optcom.2007.09.052

    Article  CAS  Google Scholar 

  53. Z.M. Htwe, Y.D. Zhang, C.B. Yao, H. Li, H.Y. Li, P. Yuan et al., Investigation of third order nonlinear optical properties of undoped and indium doped zinc oxide (InZnO) thin films by nanosecond Z-scan technique. Opt. Mater. 52, 6–13 (2016). https://doi.org/10.1016/j.optmat.2015.12.004

    Article  CAS  Google Scholar 

  54. D. Babu, P. Philominathan, K. Murali et al., Linear and non-linear optical properties of spray deposited guanidine carbonate thin films. Optik 186, 350–362 (2019). https://doi.org/10.1016/j.ijleo.2019.03.048

    Article  CAS  Google Scholar 

  55. S.A. Mulenko, V.I. Rudenko, V.R. Liakhovetskyi, A.M. Brodin, N. Stefan et al., Large third-order optical nonlinearities in iron oxide thin films synthesized by reactive pulsed laser deposition. Opt. Mater. 60, 123–127 (2016). https://doi.org/10.1016/j.optmat.2016.07.017

    Article  CAS  Google Scholar 

  56. M. Peddigari, G.P. Bharti, A. Khare, P. Dobbidi et al., Optical and dielectric studies on radio frequency sputtered Gd2O3 doped K0. 5Na0. 5NbO3 thin films for nonlinear photonic and microwave tunable device applications. J. Alloys Compd. 682, 634–642 (2016). https://doi.org/10.1016/j.jallcom.2016.05.061

    Article  CAS  Google Scholar 

  57. M. Thangaraj, G. Vinitha, T.S. Girisun, P. Anandan, G. Ravi et al., Third order nonlinear optical properties and optical limiting behavior of alkali metal complexes of p-nitrophenol. Opt. Laser Technol. 73, 130–134 (2015). https://doi.org/10.1016/j.optlastec.2015.04.023

    Article  CAS  Google Scholar 

  58. P.A. Praveen, R.R. Babu, K. Ramamurthi et al., Role of annealing on the structural and optical properties of nanostructured diaceto bis-benzimidazole mn (II) complex thin films. Spect. Acta Part. A 173, 800–808 (2017). https://doi.org/10.1016/j.saa.2016.10.030

    Article  CAS  Google Scholar 

  59. F.L. Cuppo, A.M. Neto, S.L. Gómez, P. Palffy-Muhoray et al., Thermal-lens model compared with the Sheik-Bahae formalism in interpreting Z-scan experiments on lyotropic liquid crystals. Opt. Soc. Am. B. 19(6), 1342 (2002). https://doi.org/10.1364/JOSAB.19.001342

    Article  CAS  Google Scholar 

  60. K. Sathiyamoorthy, C. Vijayan et al., Nonlinear refraction and absorption phenomena in a novel nanocomposite based on a dye stabilized in a solid hybrid matrix. J. Phys. Chem. C. 112, 14336 (2008). https://doi.org/10.1021/jp801461x

    Article  CAS  Google Scholar 

  61. K. Sathiyamoorthy, C. Vijayan, M.P. Kothiyal et al., Low power optical limiting in ClAl-phthalocyanine due to self defocusing and self phase modulation effects. Opt. Mater. 31(1), 79–86 (2008). https://doi.org/10.1016/j.optmat.2008.01.013

    Article  CAS  Google Scholar 

  62. S. Pramodini, P. Poornesh, Y.N. Sudhakar, M.S. Kumar et al., χ(3) and optical power limiting measurements of polyaniline and its derivative poly (o-toluidine) under CW regime. Opt. Commun. 293(15), 125–132 (2013). https://doi.org/10.1016/j.optcom.2012.11.088

    Article  CAS  Google Scholar 

  63. F.W. Dabby, T.K. Gustafson, J.R. Whinnery, Y. Kohanzadeh, P.L. Kelley et al., Thermally self-induced phase modulation of laser beams. Appl. Phys. Lett. 16, 362–366 (1970). https://doi.org/10.1063/1.1653226

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge Prof. K. Murali, Department of Physics, Anna University, Chennai, for his fruitful help in Z-scan measurement and related discussion.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

The experimental work, data interpretation, and article writing were done by NK and NK. KDB: provided the support for nonlinear optical discussion. KC: reviewed and consolidated the article.

Corresponding author

Correspondence to N. Kabilan.

Ethics declarations

Conflict of interest

There are no conflict of interest to declare.

Ethical approval

This article does not contain any studies involving humans and animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabilan, N., Karthikeyan, N., Dinesh Babu, K. et al. Third-order nonlinear optical properties of mono and biphasic β-tricalcium phosphate in continuous wave regime. J Mater Sci: Mater Electron 34, 885 (2023). https://doi.org/10.1007/s10854-023-10256-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10256-6

Navigation