Skip to main content
Log in

Effect of gamma-irradiation on structural, morphological, and optical properties of β-Ga2O3 single crystals

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Gallium oxide (β-Ga2O3) single crystals were grown using the optical floating zone (OFZ) technique. Compressed dry air was used as growth atmosphere. Several wafers of 1 mm thickness and 9 mm diameter were prepared from the as-grown β-Ga2O3 single crystal. The wafers were irradiated with two different doses (50 and 75 kGy) of cobalt-60 source for gamma radiation and their properties were analyzed before and after irradiation. The structural variations were analyzed utilizing powder XRD and Raman spectroscopy. The results confirm the (010) orientation for the β-Ga2O3 and the irradiated wafers. In addition, it reveals that the point defects cause lattice distortion and reduce the intensity of the active modes after irradiation. The impact of irradiation on the surface morphology of β-Ga2O3 wafers such as nanometer-sized grooves were observed. AFM analysis indicates that the roughness value was enhanced from 1.22 to 8–10 nm for the irradiated wafers. The optical properties were analyzed using UV–Vis spectroscopy and photoluminescence measurements. The optical absorption in the visible range was altered after gamma irradiation. Optical bandgap energy was reduced to 4.04 eV for irradiated wafers. In photoluminescence, the blue emission decreases in intensity and shifts to the visible region due to gamma-ray-induced defects. The results reveal the potential application of as-grown β-Ga2O3 in harsh environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Research data are not shared and will be provided on request.

References

  1. M. Higashiwaki, H. Murakami, Y. Kumagai, A. Kuramata, Jpn. J. Appl. Phys. 55, 1202A1 (2016)

    Article  Google Scholar 

  2. M. Higashiwaki, K. Sasaki, M. H. Wong, T. Kamimura, K. Goto, K. Nomura, Q. T. Thieu, R. Togashi, H. Murakami, Y. Kumagai, B. Monemar, A. Koukitu, A. Kuramata, T. Masui, and S. Yamakoshi, 2015 IEEE Compd. Semicond. Integr. Circuit Symp. CSICS 2015 1 (2015).

  3. M. Higashiwaki, K. Sasaki, H. Murakami, Y. Kumagai, A. Koukitu, A. Kuramata, T. Masui, S. Yamakoshi, Semicond. Sci. Technol. 31, 34001 (2016)

    Article  Google Scholar 

  4. S.J. Pearton, J. Yang, P.H. Cary, F. Ren, J. Kim, M.J. Tadjer, M.A. Mastro, P.H. Cary Iv, Appl. Phys. Lett. 51, 11301 (2018)

    Google Scholar 

  5. S.I. Stepanov, V.I. Nikolaev, V.E. Bougrov, A.E. Romanov, Rev. Adv. Mater. Sci. 44, 63 (2016)

    CAS  Google Scholar 

  6. V.L. Ananthu Vijayan, D. Dhanabalan, K.V. Akshita, S. Moorthy Babu, ECS J. Solid State Sci. Technol. 11, 104003 (2022)

    Article  Google Scholar 

  7. X. Huiwen, H. Qiming, J. Guangzhong, L. Shibing, P. Tao, L. Ming, Nanoscale Res. Lett. 13, 290 (2018)

    Article  Google Scholar 

  8. D. Dhanabalan, V. Ananthu, K.V. Akshita, S. Bhattacharya, E. Varadarajan, S. Ganesamoorthy, S. MoorthyBabu, V. Natarajan, S. Verma, M. Srivatsava, S. Lourdudoss, Phys. Status Solidi Basic Res. 259, 2100496 (2022)

    Article  CAS  Google Scholar 

  9. J. Zhang, J. Shi, D.C. Qi, L. Chen, K.H.L. Zhang, APL Mater. 8, 020906 (2020)

    Article  CAS  Google Scholar 

  10. H.F. Mohamed, C. Xia, Q. Sai, H. Cui, M. Pan, H. Qi, J. Semicond. 40, 011801 (2019)

    Article  CAS  Google Scholar 

  11. X. Tao, J. Semicond. 40, 010101 (2019)

    Article  Google Scholar 

  12. S.M. Koohpayeh, D. Fort, J.S. Abell, Prog. Cryst. Growth Charact. Mater. 54, 121 (2008)

    Article  CAS  Google Scholar 

  13. D.A. Bauman, A.I. Borodkin, A.A. Petrenko, D.I. Panov, A.V. Kremleva, V.A. Spiridonov, D.A. Zakgeim, M.V. Silnikov, M.A. Odnoblyudov, A.E. Romanov, V.E. Bougrov, Acta Astronaut. 180, 125 (2021)

    Article  CAS  Google Scholar 

  14. J. Kim, S.J. Pearton, C. Fares, J. Yang, F. Ren, S. Kim, A.Y. Polyakov, J. Mater. Chem. C 7, 10 (2019)

    Article  CAS  Google Scholar 

  15. B.R. Tak, M. Garg, A. Kumar, V. Gupta, R. Singh, ECS J. Solid State Sci. Technol. 8, Q3149 (2019)

    Article  CAS  Google Scholar 

  16. M.H. Wong, A. Takeyama, T. Makino, T. Ohshima, K. Sasaki, A. Kuramata, S. Yamakoshi, M. Higashiwaki, Appl. Phys. Lett. 112, 102103 (2018)

    Article  Google Scholar 

  17. S.J. Pearton, A. Aitkaliyeva, M. Xian, F. Ren, A. Khachatrian, A. Ildefonso, Z. Islam, M.A. Jafar Rasel, A. Haque, A.Y. Polyakov, J. Kim, ECS J. Solid State Sci. Technol. 10, 055008 (2021)

    Article  CAS  Google Scholar 

  18. J. Yang, G.J. Koller, C. Fares, F. Ren, S.J. Pearton, J. Bae, J. Kim, D.J. Smith, ECS J. Solid State Sci. Technol. 8, Q3041 (2019)

    Article  CAS  Google Scholar 

  19. N. Manikanthababu, H. Sheoran, P. Siddham, R. Singh, Crystals 12, 1009 (2022)

    Article  CAS  Google Scholar 

  20. S. Pradeep, R. Loganathan, S. Surender, K. Prabakaran, K. Asokan, K. Baskar, Superlattices Microstruct. 120, 40 (2018)

    Article  CAS  Google Scholar 

  21. A. Abu El-Fadl, A.M. Nashaat, Radiat. Eff. Defects Solids 170, 863 (2015)

    Article  CAS  Google Scholar 

  22. M.D. McCluskey, J. Appl. Phys. 127, 101101 (2020)

    Article  CAS  Google Scholar 

  23. K.M. Kavya, K.N. Brian, J. Fernandes, J. Mater. Sci. Mater. Electron. 29, 18905 (2018)

    Article  Google Scholar 

  24. B. Fu, Z. Jia, W. Mu, Y. Yin, J. Zhang, X. Tao, J. Semicond. 40, 011804 (2019)

    Article  CAS  Google Scholar 

  25. E.G. Villora, K. Shimamura, Y. Yoshikawa, K. Aoki, N. Ichinose, J. Cryst. Growth 270, 420 (2004)

    Article  CAS  Google Scholar 

  26. R.K. Raju, S.M. Dharmaprakash, H.S. Jayanna, Optik (Stuttg). 127, 11649 (2016)

    Article  CAS  Google Scholar 

  27. K. Zhang, Z. Xu, S. Zhang, H. Wang, H. Cheng, J. Hao, J. Wu, F. Fang, Physica B 600, 412624 (2021)

    Article  CAS  Google Scholar 

  28. C. Liu, Y. Berencén, J. Yang, Y. Wei, M. Wang, Y. Yuan, C. Xu, Y. Xie, X. Li, S. Zhou, Semicond. Sci. Technol. 33, 024001 (2018)

    Article  Google Scholar 

  29. D. Dohy, G. Lucazeau, A. Revcolevschi, J. Solid State Chem. 45, 180 (1982)

    Article  CAS  Google Scholar 

  30. S.L. Ou, D.S. Wuu, Y.C. Fu, S.P. Liu, R.H. Horng, L. Liu, Z.C. Feng, Mater. Chem. Phys. 133, 700 (2012)

    Article  CAS  Google Scholar 

  31. Z. Galazka, J. Appl. Phys. 131, 031103 (2022)

    Article  CAS  Google Scholar 

  32. K. Hanada, T. Moribayashi, T. Uematsu, S. Masuya, K. Koshi, K. Sasaki, A. Kuramata, O. Ueda, M. Kasu, Jpn. J. Appl. Phys. 55, 030303 (2016)

    Article  Google Scholar 

  33. M.N. Mirzayev, R.N. Mehdiyeva, R.G. Garibov, N.A. Ismayilova, S.H. Jabarov, Mod. Phys. Lett. B 32, 1850151 (2018)

    Article  CAS  Google Scholar 

  34. M. Kalidasan, K. Asokan, K. Baskar, R. Dhanasekaran, Radiat. Phys. Chem. 117, 70 (2015)

    Article  CAS  Google Scholar 

  35. J. Zhang, B. Li, C. Xia, G. Pei, Q. Deng, Z. Yang, W. Xu, H. Shi, F. Wu, Y. Wu, J. Xu, J. Phys. Chem. Solids 67, 2448 (2006)

    Article  CAS  Google Scholar 

  36. X. Vasanth Winston, D. Sankar, K. Senthil Kannan, M. Vimalan, T. RajeshKumar, J. Mater. Sci. Mater. Electron. 33, 20616 (2022)

    Article  CAS  Google Scholar 

  37. N.S. Jamwal, A. Kiani, Nanomaterials 12, 2061 (2022)

    Article  CAS  Google Scholar 

  38. Q.D. Ho, T. Frauenheim, P. Deák, Phys. Rev. B 97, 115163 (2018)

    Article  CAS  Google Scholar 

  39. J. Blevins, G. Yang, Mater. Res. Bull. 144, 111494 (2021)

    Article  CAS  Google Scholar 

  40. J. Tashiro, Y. Torita, T. Nishimura, K. Kuriyama, K. Kushida, Q. Xu, A. Kinomura, Solid State Commun. 292, 24 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors K.V.A would like to express her gratitude to Anna University for providing financial support through the Anna Centenary Research Fellowship (CFR/ACRF-2021/AR1). The authors would like to thank the Defense Research and Development Organization (DRDO), Government of India, research project file number ERIP/ER/201808007/M/01/1740. The authors also thank the Inter-University Accelerator Center (IUAC) in New Delhi for providing gamma irradiation facility and supporting this work (UTR 68331).

Funding

Defence Research and Development Organisation,ERIP/ER/201808007/M/01/1740,Sridharan Moorthy Babu,Inter-University Accelerator Centre,UFR 68331,Sridharan Moorthy Babu

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, KVA; methodology, KVA, RH; writing—original draft, KVA; validation, KVA, DD; visualization, DD, RH.; writing—review and editing, KVA and SMB.; supervision, SMB; investigation, KVA, SMB; project administration, SMBabu.

Corresponding author

Correspondence to Sridharan Moorthy Babu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper. This article is original and new, has been written by the stated authors who are all aware of its content and approve its submission. The article has not been published previously, it is not under consideration for publication elsewhere, and no conflict of interest exists. The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akshita, K.V., Dhanabalan, D., Hariharan, R. et al. Effect of gamma-irradiation on structural, morphological, and optical properties of β-Ga2O3 single crystals. J Mater Sci: Mater Electron 34, 841 (2023). https://doi.org/10.1007/s10854-023-10228-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10228-w

Navigation