Skip to main content

Advertisement

Log in

A temperature-stable Pd nanofilm hydrogen sensor with a Wheatstone bridge structure

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The performances of most hydrogen sensors are influenced by temperature. To reduce the influences of ambient temperature on the output response, a Pd nanofilm hydrogen sensor with a Wheatstone bridge structure was designed and fabricated by micro-electro-mechanical system (MEMS) technology. The voltage was used as the output response signal for data gathering. The performance of the Pd nanofilm sensor with a Wheatstone bridge structure was investigated. The Pd nanofilm hydrogen sensor exhibited a stable output response to hydrogen in the low concentration range within the test temperature range of 30 to 50 °C. The sensor consists of four palladium resistors, two of which have their surfaces covered by SiNx, so that they can compensate for changes in Pd resistance due to variations in ambient temperature, thus increasing the stability of the sensor. Delta Uout of the sensor increased from 7.3 mV to 18.87 mV for hydrogen concentrations from 100 ppm to 800 ppm at 30 °C. The Pd nanofilm sensor exhibited high cycling stability in 8 cycles of measurement. In selective measurements of several reducing gases, the sensor responded to hydrogen only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Y.F. Luo, C. Zhang, B.B. Zheng, X. Geng, M. Debliquy, Int. J. Hydrogen Energy 42, 20386 (2017)

    Article  CAS  Google Scholar 

  2. O. Balli, Y. Sohret, H.T. Karakoc, Int. J. Hydrogen Energy 43, 10848 (2018)

    Article  CAS  Google Scholar 

  3. F. Dawood, M. Anda, G.M. Shafiullah, Int. J. Hydrogen Energy 45, 3847 (2020)

    Article  CAS  Google Scholar 

  4. J.O. Abe, A.P.I. Popoola, E. Ajenifuja, O.M. Popoola, Int. J. Hydrogen Energy 44, 15072 (2019)

    Article  CAS  Google Scholar 

  5. N. Sazali, Int. J. Hydrogen Energy 45, 18753 (2020)

    Article  CAS  Google Scholar 

  6. K.F. Chen, D.P. Yuan, Y.Y. Zhao, Opt. Laser Technol. 137, 21 (2021)

    Article  Google Scholar 

  7. T. Hubert, L. Boon-Brett, G. Black, U. Banach, Sens. Actuator B Chem. 157, 329 (2011)

    Article  Google Scholar 

  8. T. Sahoo, P. Kale, Adv. Mater. Interfaces 8, 27 (2021)

    Article  Google Scholar 

  9. J.W. Tian, H.C. Jiang, X.W. Deng, L.Y. Zhang, J.F. Zhang, X.H. Zhao, W.L. Zhang, Int. J. Hydrogen Energy 45, 14594 (2020)

    Article  CAS  Google Scholar 

  10. S. Matsuura, N. Yamasaku, Y. Nishijima, S. Okazaki, T. Arakawa, Sensors 20, 13 (2020)

    Google Scholar 

  11. S. Ratan, C. Kumar, A. Kumar, D.K. Jarwal, A.K. Mishra, R.K. Upadhyay, A.P. Singh, S. Jit, Micro Nano Lett. 15, 632 (2020)

    Article  CAS  Google Scholar 

  12. M.M. Hao, S.H. Wu, H. Zhou, W.B. Ye, X.B. Wei, X.R. Wang, Z. Chen, S.B. Li, J. Mater. Sci. 51, 2420 (2016)

    Article  CAS  Google Scholar 

  13. L.L. Du, D.L. Feng, X.X. Xing, C. Wang, G.S. Armatas, D. Yang, Chem. Eng. J. 400, 7 (2020)

    Google Scholar 

  14. V.V. Kondalkar, J. Park, K. Lee, Sens. Actuator B Chem. 326, 12 (2021)

    Article  Google Scholar 

  15. N. Kilinc, J. Mater. Sci. Mater. Electron. 32, 5567 (2021)

    Article  CAS  Google Scholar 

  16. X.N. Meng, M.S. Bi, Q.P. Xiao, W. Gao, Int. J. Hydrogen Energy 47, 3157 (2022)

    Article  CAS  Google Scholar 

  17. H.C. Jiang, M. Huang, Y.B. Yu, X.Y. Tian, X.H. Zhao, W.L. Zhang, J.F. Zhang, Y.F. Huang, K. Yu, Sensors 18, 9 (2018)

    Google Scholar 

  18. K. Yu, X. Tian, X. Wang, F. Yang, T. Qi, Sens. Actuators B Chem. 299, 126989 (2019)

    Article  CAS  Google Scholar 

  19. J. Gong, Z.H. Wang, Y.K. Tang, J.H. Sun, X.Y. Wei, Q.M. Zhang, G. Tian, H.R. Wang, J. Alloys Compd. 930, 14 (2023)

    Article  Google Scholar 

  20. S.Y. Cho, H. Ahn, K. Park, J. Choi, H. Kang, H.T. Jung, ACS Sens. 3, 1876 (2018)

    Article  CAS  Google Scholar 

  21. A. Kumar, Y.L. Zhao, M.M. Mohammadi, J. Liu, T. Thundat, M.T. Swihart, ACS Sens. 7, 225 (2022)

    Article  CAS  Google Scholar 

  22. V. Kabitakis, E. Gagaoudakis, M. Moschogiannaki, Adv. Funct. Mater. 32, 9 (2022)

    Article  Google Scholar 

  23. B.Y. Wang, Y. Zhu, Y.P. Chen, H. Song, P.C. Huang, D.V. Dao, Mater. Chem. Phys. 194, 231 (2017)

    Article  CAS  Google Scholar 

  24. Y.E. Sun, D.Z. Zhang, H.Y. Chang, Y. Zhang, J. Mater. Sci. Mater. Electron. 28, 1667 (2017)

    Article  CAS  Google Scholar 

  25. Y.J. Zou, Q.Y. Wang, D.D. Jiang, Ceram. Int. 42, 8257 (2016)

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. HJ: guided all the experimental design and led the manuscript revision work. YD: did most of the experiments, data analysis and the draft manuscript prepared. JT, XZ, XD and WZ: participated in some experiments. All authors commented on previous versions of the manuscript and all authors read and approved the final manuscript.

Corresponding author

Correspondence to Hongchuan Jiang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This paper meets the ethical standards of this journal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Y., Jiang, H., Zhao, X. et al. A temperature-stable Pd nanofilm hydrogen sensor with a Wheatstone bridge structure. J Mater Sci: Mater Electron 34, 833 (2023). https://doi.org/10.1007/s10854-023-10219-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10219-x

Navigation