Skip to main content
Log in

Effects of Cu doping on phase composition, crystal structure, and dielectric properties of CaSiO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The dielectric ceramics of Ca1−xCuxSiO3 (x = 0 − 0.025) were prepared by solid-phase reaction method. The effects of Cu doping on phase composition, crystal structure, and dielectric properties of CaSiO3 ceramics were investigated. XRD results indicated that appropriate content of Cu doping could suppress impurity phases and obtain pure α-CaSiO3 calcined powders. After sintering, α-CaSiO3 phase was the main phase accompanied with a small quantity of impurity phases in undoped ceramics, which transformed to the single β-CaSiO3 phase after Cu doping. The phase transformation could be attributed to the change of the geometric position of SiO4 tetrahedron. SEM images showed that grain morphology changed from irregular and loose particles to dense lath by Cu doping. The Ca0.985Cu0.015SiO3 ceramics sintered at 1125 °C exhibited excellent dielectric properties: εr = 5.22, Q × f = 18,948 GHz, τf =  − 63 ppm/°C, and these make the ceramics promising for use in microwave applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article [and its supplementary information files].

References

  1. F. Huang, H. Su, Q. Zhang, X. Wu, X. Tang, Effect of Sr2+ substitution on the Raman spectrum, phase composition and microwave dielectric properties of CaMg1−xSrxSi2O6 ceramics. Ceram. Int. 48, 3904–3911 (2022). https://doi.org/10.1016/j.ceramint.2021.10.177

    Article  CAS  Google Scholar 

  2. M. Kono, H. Takagi, T. Tatekawa, H. Tamura, High Q dielectric resonator material with low dielectric constant for millimeter-wave applications. J. Eur. Ceram. Soc. 26, 1909–1912 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.09.019

    Article  CAS  Google Scholar 

  3. H. Wang, J. Chen, W. Yang, S. Feng, H. Ma, G. Jia, S. Xu, Effects of Al2O3 addition on the sintering behavior and microwave dielectric properties of CaSiO3 ceramics. J. Eur. Ceram. Soc. 32, 541–545 (2012). https://doi.org/10.1016/j.jeurceramsoc.2011.09.014

    Article  CAS  Google Scholar 

  4. A. Belous, O. Ovchar, D. Durilin, M.M. Krzmanc, M. Valant, D. Suvorov, High-Q microwave dielectric materials based on the spinel Mg2TiO4. J. Am. Ceram. Soc. 89, 3441–3445 (2006). https://doi.org/10.1111/j.1551-2916.2006.01271.x

    Article  CAS  Google Scholar 

  5. N. Mori, Y. Sugimoto, J. Harada, Y. Higuchi, Dielectric properties of new glass-ceramics for LTCC applied to microwave or millimeter-wave frequencies. J. Eur. Ceram. Soc. 26, 1925–1928 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.09.023

    Article  CAS  Google Scholar 

  6. C. Su, L. Fang, Z. Wei, X. Kuang, H. Zhang, LiCa3ZnV3O12: a novel low-firing, high Q microwave dielectric ceramic. Ceram. Int. 40, 5015–5018 (2014). https://doi.org/10.1016/j.ceramint.2013.08.081

    Article  CAS  Google Scholar 

  7. M. Terada, K. Kawamura, I. Kagomiya, K.-I. Kakimoto, H. Ohsato, Effect of Ni substitution on the microwave dielectric properties of cordierite. J. Eur. Ceram. Soc. 27, 3045–3048 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.11.050

    Article  CAS  Google Scholar 

  8. T. Kolodiazhnyi, G. Annino, M. Spreitzer, T. Taniguchi, R. Freer, F. Azough, A. Panariello, W. Fitzpatrick, Development of Al2O3–TiO2 composite ceramics for high-power millimeter-wave applications. Acta Mater. 57, 3402–3409 (2009). https://doi.org/10.1016/j.actamat.2009.03.050

    Article  CAS  Google Scholar 

  9. S.W. Lim, J. Bang, Microwave dielectric properties of Mg4Nb2O9 ceramics produced by hydrothermal synthesis. J. Electroceram. 23, 116–120 (2007). https://doi.org/10.1007/s10832-007-9322-0

    Article  CAS  Google Scholar 

  10. K.X. Song, X.M. Chen, X.C. Fan, Effects of Mg/Si ratio on microwave dielectric characteristics of forsterite ceramics. J. Am. Ceram. Soc. 90, 1808–1811 (2007). https://doi.org/10.1111/j.1551-2916.2007.01656.x

    Article  CAS  Google Scholar 

  11. T. Sugiyama, T. Tsunooka, K.I. Kakimoto, H. Ohsato, Microwave dielectric properties of forsterite-based solid solutions. J. Eur. Ceram. Soc. 26, 2097–2100 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.09.102

    Article  CAS  Google Scholar 

  12. K.X. Song, X.M. Chen, C.W. Zheng, Microwave dielectric characteristics of ceramics in Mg2SiO4–Zn2SiO4 system. Ceram. Int. 34, 917–920 (2008). https://doi.org/10.1016/j.ceramint.2007.09.057

    Article  CAS  Google Scholar 

  13. P.N. De Aza, Z.B. Luklinsk, M.R. Anseau, M. Hector, F. Guitian, S. De Aza, Reactivity of a wollastonite-tricalcium phosphate bioeutectic ceramic in human parotid saliva. Biomaterials 21, 1735–1741 (2000). https://doi.org/10.1016/s0142-9612(00)00058-2

    Article  Google Scholar 

  14. W. Hu, H. Liu, H. Hao, Z. Yao, M. Cao, Z. Wang, Z. Song, Influence of TiO2 additive on the microwave dielectric properties of α-CaSiO3–Al2O3 ceramics. Ceram. Int. 41, S510–S514 (2000). https://doi.org/10.1016/j.ceramint.2015.03.138

    Article  CAS  Google Scholar 

  15. N. Tangboriboon, T. Khongnakhon, S. Kittikul, R. Kunanuruksapong, A. Sirivat, An innovative CaSiO3 dielectric material from eggshells by sol–gel process. J. Sol-Gel Sci. Technol. 58, 33–41 (2010). https://doi.org/10.1007/s10971-010-2351-1

    Article  CAS  Google Scholar 

  16. W. Cai, T. Jiang, X.Q. Tan, Q. Wei, Y. Li, Development of low dielectric constant calcium silicate fired at low temperature. Electron. Comp. Mater. 21, 16–18 (2002)

    CAS  Google Scholar 

  17. H. Wang, Q. Zhang, H. Yang, H. Sun, Synthesis and microwave dielectric properties of CaSiO3 nanopowder by the sol–gel process. Ceram. Int. 34, 1405–1408 (2008). https://doi.org/10.1016/j.ceramint.2007.05.001

    Article  CAS  Google Scholar 

  18. Q. Ma, S. Wu, C. Jiang, J. Li, Microwave dielectric properties of SnO2-doped CaSiO3 ceramics. Ceram. Int. 39, 2223–2229 (2013). https://doi.org/10.1016/j.ceramint.2012.08.066

    Article  CAS  Google Scholar 

  19. H. Sun, Q. Zhang, H. Yang, J. Zou, (Ca1−xMgx)SiO3: a low-permittivity microwave dielectric ceramic system. Mater. Sci. Eng B. 138, 46–50 (2007). https://doi.org/10.1016/j.mseb.2007.01.012

    Article  CAS  Google Scholar 

  20. R.P. Sreekanth Chakradhar, B.M. Nagabhushana, G.T. Chandrappa, K.P. Ramesh, J.L. Rao, Solution combustion derived nanocrystalline macroporous wollastonite ceramics. Mater. Chem. Phys. 95, 169–175 (2006). https://doi.org/10.1016/j.matchemphys.2005.06.002

    Article  CAS  Google Scholar 

  21. Y. Cui, X. Liu, M. Jiang, Y. Hu, Q. Su, H. Wang, Lead-free (Ba0.7Ca0.3)TiO3-Ba(Zr0.2Ti0.8)O3-xwt% CuO ceramics with high piezoelectric coefficient by low-temperature sintering. J. Mater. Sci. Mater. Electron. 23, 1342–1345 (2011). https://doi.org/10.1007/s10854-011-0596-2

    Article  CAS  Google Scholar 

  22. C.L. Huang, J.Y. Chen, C.Y. Jiang, Low-temperature sintering microwave dielectrics using CuO-doped Zn(Nb0.95Ta0.05)2O6 ceramics. J. Am. Ceram. Soc. 93, 2755–2759 (2010). https://doi.org/10.1111/j.1551-2916.2010.03786.x

    Article  CAS  Google Scholar 

  23. Y. Lai, X. Tang, X. Huang, H. Zhang, X. Liang, J. Li, H. Su, Phase composition, crystal structure and microwave dielectric properties of Mg2−xCuxSiO4 ceramics. J. Eur. Ceram. Soc. 38, 1508–1516 (2018). https://doi.org/10.1016/j.jeurceramsoc.2017.10.035

    Article  CAS  Google Scholar 

  24. Q. Zhang, H. Su, X. Tang, Y. Li, R. Peng, X. Jing, Y. Jing, Effects of Cu2+ substitution on bond characteristics, Raman spectra, and microwave dielectric properties of Li2Mg0.6Zn0.4SiO4 ceramics. J. Eur. Ceram. Soc. 41, 3432–3437 (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.01.038

    Article  CAS  Google Scholar 

  25. B.H. Toby, EXPGUI, a graphical user interface for GSAS. J. Appl. Cryst. 34, 210–213 (2001). https://doi.org/10.1107/S0021889801002242

    Article  CAS  Google Scholar 

  26. B.H. Toby, R.B. Von Dreele, GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Cryst. 46, 544–549 (2013)

    Article  CAS  Google Scholar 

  27. B.W. Hakki, P.D. Coleman, A dielectric resonator method of measuring inductive capacitors in the millimeter range. IEEE Trans. Microwave Theor. Technol. 8, 402–410 (1960). https://doi.org/10.1109/TMTT.1960.1124749

    Article  Google Scholar 

  28. W.E. Courtey, Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators. IEEE Trans. Microwave Theor. Technol. 18, 475–485 (1970). https://doi.org/10.1109/TMTT.1970.1127271

    Article  Google Scholar 

  29. T. Yamanaka, H. Mori, The structure and polytypes of α-CaSiO3 (pseudo-wollastonite). Acta Crystallogr. Sect. B. 37, 1010–1017 (1981). https://doi.org/10.1107/S0567740881004962

    Article  Google Scholar 

  30. S. Kulkarni, B.M. Nagabhushana, N. Suriyamurthy, C. Shivakumara, R.P.S. Chakradhar, R. Damle, Synthesis, luminescence and EPR studies on CaSiO3: Pb, Mn-nano phosphors synthesized by the solution combustion method. Ceram. Int. 39, 1917–1922 (2013). https://doi.org/10.1016/j.ceramint.2012.08.041

    Article  CAS  Google Scholar 

  31. X. Xing, D. Ling, L. Tan, Microwave synthesis of CaSiO3:(Eu2+, Dy3+) nanorods and verification on luminescence properties. J. Mater. Sci. Mater. Electron. 25, 4774–4778 (2014). https://doi.org/10.1007/s10854-014-2232-4

    Article  CAS  Google Scholar 

  32. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 34, 1719–1722 (2003). https://doi.org/10.1126/science.1080615

    Article  CAS  Google Scholar 

  33. Z.Q. Yu, A.L. Liang, Characteristics of wollastonite as low temperature ceramic raw material. Foshan Ceram. 67, 17–20 (2002)

    Google Scholar 

Download references

Funding

This study was supported by the fund of the Applied Basic Research Foundation of Yunnan Province (Grant Nos. 202002AB080001-1), Major Science and Technology Programs of Yunnan Province (Grant Nos. 202102AB080008), and the Science and Technology Program of Yunnan Precious Metal Laboratory (Grant Nos. YPML-2022050205).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by GW, ZL, ML, JH, ML, YL and HX. The first draft of the manuscript was written by GW. YZ, JH and YL commented on previous versions of the manuscript. JL participated in the revision of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jiao Han, Jisong Liu or Yiming Zeng.

Ethics declarations

Conflict of interest

The authors declares that they have no competing financial interests or personal relationships that could have appeared to influence work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Lin, Z., Li, M. et al. Effects of Cu doping on phase composition, crystal structure, and dielectric properties of CaSiO3 ceramics. J Mater Sci: Mater Electron 34, 815 (2023). https://doi.org/10.1007/s10854-023-10204-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10204-4

Navigation