Skip to main content
Log in

Optical analysis of tin-doped GaNAs layers grown on GaAs by molecular beam epitaxy

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The optical non-destructive characterization of tin-doped GaNxAs1−x layer grown on GaAs (100) is presented. Molecular beam epitaxy was employed to grow GaNAs:Sn samples with nitrogen molar content at two different values, x ~ 0.001 and ~ 0.02. The n-type doping concentration was controlled by the Sn effusion cell temperature (TSn), exploring the range from 700 to 850 °C. High-resolution x-ray diffraction rocking curves of the samples indicate that it is possible to obtain GaNAs:Sn layers with appropriated crystallinity. Raman spectra present modifications in vibrational modes related to the Sn atom incorporation. The plasmon-phonon-coupled mode frequency and intensity are evaluated, showing a TSn-dependent donor atom concentration range from 1016 to 1019 cm−3. Spectral signatures obtained by photoreflectance spectroscopy reveal an increasing E broadening parameter as the Sn effusion cell temperature is raised. Additionally, from Franz–Keldysh oscillations it is observed that the internal electric field strength increases with the donor concentration. The optical results were contrasted using the four-point probe method, demonstrating changes in sheet resistivity for the samples according with the employed spectroscopies. For similar TSn, the set of samples with x ~ 0.02 shows increased properties related to tin incorporation for each characterization technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. M. Yukimune, R. Fujiwara, F. Ishikawa, S. Chen, W.M. Chen, I.A. Buyanova, Compound Semiconductor Week (CSW) (IEEE, New York, 2019), pp.1–1

    Google Scholar 

  2. C.K. Tan, D. Borovac, W. Sun, N. Tansu, S. Preuss, Sci. Rep. 6, 19271 (2016). https://doi.org/10.1038/srep19271

    Article  CAS  Google Scholar 

  3. W. Dawidowski, B. Ściana, K. Bielak, M. Mikolášek, J. Drobný, J. Serafińczuk, I. Lombardero, D. Radziewicz, W. Kijaszek, A. Kósa, M. Florovič, J. Kováč Jr., C. Algora, L. Stuchlíková, Energies 14(15), 4651 (2021). https://doi.org/10.3390/en14154651

    Article  CAS  Google Scholar 

  4. F. Sarcan, Y. Wang, T.F. Krauss, T. Erucar, A. Erol, Opt. Laser Technol. 122, 105888 (2020). https://doi.org/10.1016/j.optlastec.2019.105888

    Article  CAS  Google Scholar 

  5. P. Prete, N. Lovergine, Prog Cryst. Growth Charact. Mater. 66(4), 100510 (2020). https://doi.org/10.1016/j.pcrysgrow.2020.100510

    Article  CAS  Google Scholar 

  6. R. Kudrawiec, G. Sek, J. Misiewicz, L.H. Li, J.C. Harmand, Solid State Commun. 129(6), 353–357 (2004). https://doi.org/10.1016/j.ssc.2003.11.004

    Article  CAS  Google Scholar 

  7. W. Shan, W. Walukiewicz, K.M. Yu, J.W. Ager III., E.E. Haller, J.F. Geisz, D.J. Friedman, J.M. Olson, S.R. Kurtz, H.P. Xin, C.W. Tu, Phys. Stat. Sol (b) 223, 75 (2001)

    Article  CAS  Google Scholar 

  8. S.Z. Wang, S.F. Yoon, W.J. Fan, W.K. Loke, T.K. Ng, S.Z. Wang, J. Appl. Phys. 96, 2010 (2004). https://doi.org/10.1063/1.1767614

    Article  CAS  Google Scholar 

  9. Md.D. Haque, Md.H. Ali, Md.M. Hossain, Md.S. Hossain, M.I. Hossain, Md.A. Halim, A.Z.M.T. Islam, Phys. Scr. 97(8), 085006 (2022). https://doi.org/10.1088/1402-4896/ac7d79

    Article  Google Scholar 

  10. Y. Huang, V. Plojärvi, S. Hiura, P. Höjer, A. Aho, R. Isoaho, T. Hakkarainen, M. Guina, S. Sato, J. Takayama, I.A. Buyanova, W.M. Chen, Nat. Photonics 15, 475–482 (2021). https://doi.org/10.1038/s41566-021-00786-y

    Article  CAS  Google Scholar 

  11. J.E. Stehr, R.M. Balagula, M. Jansson, M. Yukimune, R. Fujiwara, F. Ishikawa, W.M. Chen, I.A. Buyanova, Nanotechnol 31(6), 065702 (2019). https://doi.org/10.1088/1361-6528/ab51cd

    Article  CAS  Google Scholar 

  12. K.A. Mohamada, M.S. Nordinb, N. Nayana, A. Aliasc, A.R. Mohmadd, A. Boland-Thomsb, A.J. Vickersb, Characterization of III-V dilute nitride based multi-quantum well pin diodes for next generation opto-electrical conversion devices. Mater. Today Proc. 7, 625–631 (2019). https://doi.org/10.1016/j.matpr.2018.12.053

    Article  CAS  Google Scholar 

  13. N. Ahsan, N. Miyashita, M.M. Islam, K.M. Yu, W. Walukiewicz, Y. Okada, Appl. Phys. Lett. 100, 172111 (2012). https://doi.org/10.1063/1.4709405

    Article  CAS  Google Scholar 

  14. M. Yukimune, R. Fujiwara, T. Mita, N. Tsuda, J. Natsui, Y. Shimizu, M. Jansson, R. Balagula, W.M. Chen, I.A. Buyanova, F. Ishikawa, Nanotechnol 30(24), 244002 (2019). https://doi.org/10.1088/1361-6528/ab0974

    Article  CAS  Google Scholar 

  15. J.J. Cabrera Montealvo, L.I. Espinosa Vega, L.M. Hernández Gaytán, C.A. Mercado Ornelas, F.E. Perea Parrales, A. Belio Manzano, C.M. Yee, A.G. Rendón, V.H. Rodríguez, I.E. Méndez García, Cortes, Mestizo, Thin Solid Films 748, 139147 (2022). https://doi.org/10.1016/j.tsf.2022.139147

    Article  CAS  Google Scholar 

  16. H.F. Liu, N. Xiang, S.J. Chua, S. Tripathy, J. Cryst. Growth 288(1), 44–48 (2006). https://doi.org/10.1016/j.jcrysgro.2005.12.045

    Article  CAS  Google Scholar 

  17. I. Suemune, K. Uesugi, T.Y. Seong, Semicond. Sci. Technol. 17, 755–761 (2002). https://doi.org/10.1088/0268-1242/17/8/303

    Article  CAS  Google Scholar 

  18. J. Olea, K.M. Yu, W. Walukiewicz, G. Gonzalez-Díaz, Phys. Status Solidi C 7(7–8), 1890–1893 (2010). https://doi.org/10.1002/pssc.200983569

    Article  CAS  Google Scholar 

  19. L. Wang, O. Elleuch, Y. Shirahata, N. Kojima, Y. Ohshita, M. Yamaguchi, J. Cryst. Growth 437, 6–9 (2016). https://doi.org/10.1016/j.jcrysgro.2015.12.011

    Article  CAS  Google Scholar 

  20. M. Shafi, R.H. Mari, M. Henini, D. Taylor, M. Hopkinson, Phys. Status Solidi C 6(12), 2652–2654 (2009). https://doi.org/10.1002/pssc.200982561

    Article  CAS  Google Scholar 

  21. T. Tsukasaki, R. Hiyoshi, M. Fujita, T. Makimoto, J. Cryst. Growth 514, 45–48 (2019). https://doi.org/10.1016/j.jcrysgro.2019.02.042

    Article  CAS  Google Scholar 

  22. T. Tsukasaki, R. Hiyoshi, M. Fujita, T. Makimoto, Cryst. Res. Technol. 56(3), 2000143 (2021). https://doi.org/10.1002/crat.202100204

    Article  CAS  Google Scholar 

  23. J. Ibáñez, E.A. Lladó, R. Cuscó, L. Artús, D. Fowler, A. Patanè, K. Uesugi, I. Suemune, J. Mater. Sci. Mater. Electron. 20, 425–429 (2009). https://doi.org/10.1007/s10854-008-9661-x

    Article  CAS  Google Scholar 

  24. S.W. Johnston, S.R. Kurtz, J. Vac Sci. Technol. A 24, 1252 (2006). https://doi.org/10.1116/1.2167081

    Article  CAS  Google Scholar 

  25. M. Shiraga, Y. Nakai, T. Hirashima, A. Kittaka, M. Ebisu, N. Takahashi, T. Noda, M. Ohmori, H. Akiyama, N. Tsurumachi, S. Nakanishi, H. Miyagawa, H. Itoh, S. Koshiba, Phys. Status Solidi C 8(2), 420–422 (2011). https://doi.org/10.1002/pssc.201000595

    Article  CAS  Google Scholar 

  26. A.N. Klochkov, G.B. Galiev, E.A. Klimov, S.S. Pushkarev, Phys. Status Solidi b 260(2), 2200297 (2022). https://doi.org/10.1002/pssb.202200297

    Article  CAS  Google Scholar 

  27. S.J. Hu, M.R. Fahy, K. Sato, B.A. Joyce, J. Electron. Mater. 24(8), 1003–1006 (1995). https://doi.org/10.1007/BF02652974

    Article  CAS  Google Scholar 

  28. L. Peters, L. Phaneuf, L.W. Kapitan, W.M. Theis, J. Appl. Phys. 62, 4558 (1987). https://doi.org/10.1063/1.339050

    Article  CAS  Google Scholar 

  29. N.I. Goktas, E.M. Fiordaliso, R.R. LaPierre, Nanotechnol 29(23), 234001 (2018). https://doi.org/10.1088/1361-6528/aab6f1

    Article  CAS  Google Scholar 

  30. H. Eshghi, F.S. Tehrani, J. Optoelectron, Adv. Mater. 11(10), 1467–1470 (2009)

    CAS  Google Scholar 

  31. A.Y. Cho, Thin Solid Films 100(3), 291–317 (1983). https://doi.org/10.1016/0040-6090(83)90154-2

    Article  CAS  Google Scholar 

  32. J. Misiewicz, R. Kudrawiec, G. Sek, Dilute Nitride Semiconductors, 1st edn. (Elsevier, Wroclaw, 2005), pp. 279–324, https://doi.org/10.1016/B978-008044502-1/50009-3

    Book  Google Scholar 

  33. A. Pulzara Mora, M. Meléndez Lira, C. Falcony Guajardo, M. López López, M.A. Vidal, S. Jiménez-Sandoval, M.A. Aguilar, Frutis, J. Vac Sci. Technol. B 24, 1591 (2006). https://doi.org/10.1116/1.2201451

    Article  CAS  Google Scholar 

  34. D.J. Dunstan, J. Mater. Sci. Mater. Electron. 8, 337–375 (1997). https://doi.org/10.1023/A:1018547625106

    Article  CAS  Google Scholar 

  35. O. T.Tite, M. Pagès, J.P. Ajjoun, D. Laurenti, E. Bormann, O. Tournié, M.C. Maksimov, Tamargo, Solid State Electron 47(3), 455–460 (2003). https://doi.org/10.1016/S0038-1101(02)00388-X

    Article  Google Scholar 

  36. M. Ramsteiner, D.S. Jiang, J.S. Harris, K.H. Ploog, Appl. Phys. Lett. 84, 1859 (2004). https://doi.org/10.1063/1.1669070

    Article  CAS  Google Scholar 

  37. J. Ibáñez, E.A. Lladó, R. Cuscó, L. Artús, M. Hopkinson, J. Appl. Phys. 102, 013502 (2007). https://doi.org/10.1063/1.2749491

    Article  CAS  Google Scholar 

  38. H.F. Liu, N. Xiang, S. Tripathy, S.J. Chua, Thin Solid Films 515, 759–763 (2006). https://doi.org/10.1016/j.tsf.2005.12.282

    Article  CAS  Google Scholar 

  39. T.P. Humphreys, J.B. Posthill, K. Das, C.A. Sukow, R.J. Nemanichi, N.R. Parikh, A. Majeed, J. Appl. Phys. 28, L1595 (1989). https://doi.org/10.1143/JJAP.28.L1595

    Article  CAS  Google Scholar 

  40. J. Misiewicz, P. Sitarek, G. Sęk, R. Kudrawiec, J. Mater. Sci. 21(3), 263–320 (2003)

    CAS  Google Scholar 

  41. H. Altan, X. Xin, D. Matten, R.R. Alfano, Appl. Phys. Lett. 89, 052110 (2006). https://doi.org/10.1063/1.2236300

    Article  CAS  Google Scholar 

  42. V.N. Bessolov, M.V. Lebedev, D.R.T. Zahn, J. Appl. Phys. 82, 2640 (1997). https://doi.org/10.1063/1.366079

    Article  CAS  Google Scholar 

  43. I.E. Cortes Mestizo, L.I. Espinosa Vega, J.A. Espinoza Figueroa, A. Cisneros, E. de la Rosa, V.H. Eugenio Lopez, Mendez Garcia, J. Vac Sci. Technol. B 34, 02L110 (2016). https://doi.org/10.1116/1.4942898

    Article  CAS  Google Scholar 

  44. L.A. Farrow, C.J. Sandroff, M.C. Tamargo, Raman scattering measurements of decreased barrier heights in GaAs following surface chemical passivation. Appl. Phys. Lett. 51, 1931 (1987). https://doi.org/10.1063/1.98304

    Article  Google Scholar 

  45. I.E. Cortes Mestizo, E. Briones, C.M. Yee, L. Rendón, L.I. Zamora Peredo, R. Espinosa Vega, V.H. Droopad, Méndez, García, J. Cryst. Growth 477, 59–64 (2017). https://doi.org/10.1016/j.jcrysgro.2017.04.015

    Article  CAS  Google Scholar 

  46. D. Segev, C.G. Van de Walle, Europhys. Lett. 76(2), 305–311 (2006). https://doi.org/10.1209/epl/i2006-10250-2

    Article  CAS  Google Scholar 

  47. A. Chtanov, T. Baars, M. Gal, Phys. Rev. B 53(8), 4704 (1996). https://doi.org/10.1103/PhysRevB.53.4704

    Article  CAS  Google Scholar 

  48. R. Kudrawiec, W. Walukiewicz, J. Appl. Phys. 126, 141102 (2019). https://doi.org/10.1063/1.5111965

    Article  CAS  Google Scholar 

  49. D.E. Aspnes, Surf. Sci. 37, 418–442 (1973). https://doi.org/10.1016/0039-6028(73)90337-3

    Article  CAS  Google Scholar 

  50. D.E. Aspens, A.A. Studna, Phys. Rev. B 7(10), 4605–4625 (1973). https://doi.org/10.1103/PhysRevB.7.4605

    Article  Google Scholar 

  51. O.S. Komkov, S.A. Khakhulin, D.D. Firsov, P.S. Avdienko, I.V. Sedova, S.V. Sorokin, Semiconductors 54(10), 1198–1204 (2020). https://doi.org/10.1134/S1063782620100176

    Article  CAS  Google Scholar 

  52. W. Walukiewicz, W. Shan, J.W. Ager III, D.R. Chamberlin, E.E. Haller, J.F. Geisz, D.J. Friedman, J.M. Olson, S.R. Kurtz. (April 1999). Nitrogen-Induced Modification of the Electronic Structure of Group III-N-V Alloys [Conference paper]. Electrochemical Society International Symposium, Seattle, Washington. https://www.nrel.gov/docs/fy99osti/29583.pdf

  53. K. Chakir, C. Bilel, A. Rebey, Semiconductors 53, 1740–1744 (2019). https://doi.org/10.1134/S1063782619130037

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge to CONACYT program Investigadoras e Investigadores por Mexico (Project No. 44). The authors also thank IrinaVlaeva for professional English editing service.

Funding

The authors acknowledge the financial support of FRC-UASLP, COPOCyT, and CONACYT-Mexico through grants: INFR-2015-01-255489, CB 2015- 257358, PNCPN2014-01-248071, and Fideicomiso 23871.

Author information

Authors and Affiliations

Authors

Contributions

Thin-film preparation, characterization, and writing of the manuscript were realized by all the authors. Data collection and analysis were performed by MVF and PGMR. IECM contributed to the conceptualization, supervision, and editing of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to I. E. Cortes-Mestizo.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This paper meets the ethical standards of this journal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villarreal-Faz, M., Meza-Reyes, P.G., Belio-Manzano, A. et al. Optical analysis of tin-doped GaNAs layers grown on GaAs by molecular beam epitaxy. J Mater Sci: Mater Electron 34, 812 (2023). https://doi.org/10.1007/s10854-023-10195-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10195-2

Navigation