Skip to main content
Log in

Structural and magnetic properties of Ni/C core–shell nanofibers prepared by one step co-axial electrospinning method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nickel/carbon (Ni/C) nanofibrous structures with magnetic material nickel in the core and carbon in the shell are fabricated by the co-axial electrospinning method. The crystallinity, morphology, elemental composition, and microstructure of the carbonized nanofibers are characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), energy-dispersive X-ray spectroscopy (EDX), and high-resolution transmission electron microscope (HRTEM) respectively. Rietveld refinement method of XRD pattern was carried out to determine the structural parameters of face-centered cubic (FCC) Ni with space group Fm3m. The average crystallite size and the lattice strain have been calculated using the Williamson–Hall (W–H) plot method. It is demonstrated that the compressive lattice strain is attributed due to the presence of polymer-derived carbon material. Raman data confirms the formation of pure C in the Ni/C nanofibers. Furthermore, a vibrating sample magnetometer (VSM) is used for the magnetic measurement of the Ni/C nanofibers. It is observed that the nanofibers show typical ferromagnetic behavior having the optimum value of saturation magnetization of 5.12 emu/g. The temperature-dependent magnetic measurements suggest the ferromagnetic behavior of Ni/C nanofibers within the room temperature (300 K).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data analyzed during the study are included in this article.

9. References

  1. H. Wu, W. Pan, D. Lin, H. Li, Electrospinning of ceramic nanofibers: fabrication, assembly and applications. J. Adv. Ceram. 1, 2226–4108 (2012). https://doi.org/10.1007/s40145-012-0002-4

    Article  CAS  Google Scholar 

  2. N.A.M. Barakat, B. Kim, H.Y. Kim, Production of smooth and pure nickel metal nanofibers by the electrospinning technique: nanofibers possess splendid magnetic properties. J. Phys. Chem. C 113, 531–536 (2009). https://doi.org/10.1021/jp805692r

    Article  CAS  Google Scholar 

  3. C. Wang, X. Han, P. Xu, J. Wang, Y. Du, X. Wang, W. Qin, T. Zhang, Controlled synthesis of hierarchical nickel and morphology-dependent Electromagnetic Properties. J. Phys. Chem. C 114, 3196–3203 (2010). https://doi.org/10.1021/jp908839r

    Article  CAS  Google Scholar 

  4. B. Pant, G.P. Ojha, J. Acharya, M. Park, Eggshell membrane templated synthesis of Ni/MoC decorated carbon fibers with good electrochemical behaviour. Int. J. Hydrog Energy 46, 2774–2782 (2020). https://doi.org/10.1016/j.ijhydene.2020.10.139

    Article  CAS  Google Scholar 

  5. M. Adabi, M. Adabi, Electrodeposition of nickel on electrospun carbon nanofiber mat electrode for electrochemical sensing of glucose. J. Dispers Sci. Technol. 42, 262–269 (2019). https://doi.org/10.1080/01932691.2019.1678483

    Article  CAS  Google Scholar 

  6. J.P. Cheng, W.D. Wang, X.C. Wang, F. Liu, Recent research of core–shell structured composites with NiCo2O4 as scaffolds for electrochemical capacitors. J. Chem. Eng. 393, 124747 (2020). https://doi.org/10.1016/j.cej.2020.124747

    Article  CAS  Google Scholar 

  7. J. Lu, H. Wan, T. Ju, Z. Ying, W. Zhang, B. Li, Y. Zhang, Super flexible electrospun carbon/nickel nanofibrous film electrode for supercapacitors. J. Alloys Compd. 774, 593–600 (2018). https://doi.org/10.1016/j.jallcom.2018.09.383

    Article  CAS  Google Scholar 

  8. Z. Bai, S. Liu, P. Chen, G. Cheng, G. Wu, H. Li, Y. Liu, Nickel nanoparticles embedded in porous carbon nanofibers and its electrochemical properties. Nanotechnology 31, 30 (2020). https://doi.org/10.1088/1361-6528/ab8594

    Article  CAS  Google Scholar 

  9. Y. Shen, Y. Wei, J. Ma, Q. Li, J. Li, W. Shao, P. Yan, G. Huang, X. Du, Tunable microwave absorption properties of nickel-carbon nanofibers prepared by Electrospinning. Ceram. Int 45, 3313–3324 (2018). https://doi.org/10.1016/j.ceramint.2018.10.242

    Article  CAS  Google Scholar 

  10. Y. Huang, H. Zhang, G. Zeng, Z. Li, D. Zhang, H. Zhu, R. Xie, L. Zheng, J. Zhu, The microwave absorption properties of carbon-encapsulated nickel nanoparticles/ silicone resin flexible absorbing material. J. Alloys Compd. 682, 138–143 (2016). https://doi.org/10.1016/j.jallcom.2016.04.289

    Article  CAS  Google Scholar 

  11. X. Chen, L. Cheng, H. Li, A. Barhoum, Y. Zhang, X. He, W. Yang, M.M. Bubakir, H. Chen, Magnetic nanofibers: unique properties, fabrication techniques, and emerging applications. Chem. Select 3, 9127–9143 (2018). https://doi.org/10.1002/slct.201702480

    Article  CAS  Google Scholar 

  12. Y.T. Jeon, G.H. Lee, J. Park, Y. Chang, Comparison of the magnetic Properties of Metastable Hexagonal Close-Packed Ni Nanoparticles with those of the stable face-centered cubic ni nanoparticles. J. Phys. Chem. B 110, 1187 (2006). https://doi.org/10.1021/jp054608b

    Article  CAS  Google Scholar 

  13. J. Li, E. Liu, W. Li, X. Meng, S. Tan, Nickel/carbon nanofibers composite electrodes as supercapacitors prepared by electrospinning. J. Alloys Compd. 478, 371–374 (2009). https://doi.org/10.1016/j.jallcom.2008.11.024

    Article  CAS  Google Scholar 

  14. Y. Liu, M. Hao, Z. Chen, L.L. Liu, Y. Liu, W. Yang, S. Ramakrishna, A review on recent advances in application of Electrospun Nanofiber materials as biosensors. Curr. Opin. Biomed. Eng. 13, 174–189 (2020). https://doi.org/10.1016/j.cobme.2020.02.001

    Article  CAS  Google Scholar 

  15. N.A.M. Barakat, M. Motlak, B.S. Kim, A.G.E. Deen, S.S.A. Deyab, A.M. Hamza, Carbon nanofibers doped by NixCo1–x alloy nanoparticles as effective and stable non precious electrocatalyst for methanol oxidation in alkaline media. J. Mol. Catal. A 394, 177–187 (2014). https://doi.org/10.1016/j.molcata.2014.07.011

    Article  CAS  Google Scholar 

  16. A.K. Moghe, B.S. Gupta, Co-axial Electrospinning for Nanofiber Structures: Preparation and Applications. Polym. Rev. 48, 353–377 (2008). https://doi.org/10.1080/15583720802022257

    Article  CAS  Google Scholar 

  17. Y. Ji, X. Zhang, Y. Zhu, B. Li, Y. Wang, J. Zhang, Y. Feng, Nickel nanofibers synthesized by the electrospinning method. Mater. Res. Bull. 48, 2426–2429 (2013). https://doi.org/10.1016/j.materresbull.2013.02.043

    Article  CAS  Google Scholar 

  18. Y. Shen, Y. Wei, J. Li, Y. Zhang, B. Li, X. Lu, B. Ji, P. Yan, X. Du, Fabrication of microwave absorbing Ni/NiO/C nanofibers with robust superhydrophobic properties by electrospinning. J. Mater. Sci. : Mater. Electron. 31, 226–238 (2019). https://doi.org/10.1007/s10854-019-02462-y

    Article  CAS  Google Scholar 

  19. B. Quan, X. Liang, G. Ji, Y. Zhang, G. Xu, Y. Du, Cross-Linking-Derived Synthesis of Porous CoxNiy/C Nanocomposites for excellent electromagnetic behaviours. ACS Appl. Mater. Interfaces 9, 38814–38823 (2017). https://doi.org/10.1021/acsami.7b13411

    Article  CAS  Google Scholar 

  20. L. Sainia, M.K. Patraa, A. Dixit, Large scale re-producible synthesis and magnetic properties of Ni/graphite core-shell nanostructured materials. J. Magn. Magn. Mater. 501, 166444 (2020). https://doi.org/10.1016/j.jmmm.2020.166444

    Article  CAS  Google Scholar 

  21. D. Liu, Y. Du, P. Xu, N. Liu, Y. Wang, H. Zhao, L. Cui, X. Han, Waxberry-like hierarchical Ni@C microspheres with high performance microwave absorption. J. Mater. Chem. C 7, 5037–5046 (2013). https://doi.org/10.1039/C9TC00771G

    Article  Google Scholar 

  22. N. Kaerkitcha, S. Chuangchote, T. Sagawa, Control of physical properties of carbon nanofibers obtained from co-axial electrospinning of PMMA and PAN with adjustable inner/outer nozzle-ends. Nanoscale Res. Lett. 11, 186 (2016). https://doi.org/10.1186/s11671-016-1416-7

    Article  CAS  Google Scholar 

  23. G.A. Kaur, M. Shandilya, P. Rana, S. Thakur, P. Uniyal, Modification of structural and magnetic properties of Co0.5Ni0.5Fe2O4 nanoparticles embedded polyvinylidene fluoride nanofiber membrane via electrospinning method. Nano-Struct. Nano-Objects 22, 100428 (2020). https://doi.org/10.1016/j.nanoso.2020.100428

    Article  CAS  Google Scholar 

  24. P. Xie, B. He, F. Dang, J. Lin, R. Fan, C. Hou, H. Liu, J. Zhang, Y. Ma, Z. Guo, Bio-gel derived nickel/carbon nanocomposites with enhanced microwave absorption. J. Mater. Chem. C 6, 8812–8822 (2018). https://doi.org/10.1039/C8TC02127A

  25. G. Fredi, S. Jeschke, A. Boulaoued, J. Wallenstein, M. Rashidi, F. Liu, R. Harnden, D. Zenkert, J. Hagberg, G. Lindbergh, P. Johansson, L. Stievano, L.E. Asp, Graphitic microstructure and performance of carbon fibre Li-ion structural battery electrodes. Multifunct. Mater. 1, 015003 (2018). https://doi.org/10.1088/2399-7532/aab707

    Article  CAS  Google Scholar 

  26. A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 20 (2000). https://doi.org/10.1103/PhysRevB.61.14095

    Article  Google Scholar 

  27. Q. Lia, Z. Nia, J. Gonga, D. Zhua, Z. Zhua, Carbon nanotubes coated by carbon nanoparticles of turbostratic stacked graphenes. Carbon 46, 434–439 (2008). https://doi.org/10.1016/j.carbon.2007.12.002

    Article  CAS  Google Scholar 

  28. A. Manukyan, A. Elsukova, A. Mirzakhanyan, H. Gyulasaryan, A. Kocharian, S. Sulyanov, M. Spasova, F. Römer, M. Farle, E. Sharoyan, Structure and size dependence of the magnetic properties of Ni@C nanocomposites. J. Magn. Magn. Mater. 467, 150–159 (2018). https://doi.org/10.1016/j.jmmm.2018.07.056

    Article  CAS  Google Scholar 

  29. Y. Sui, B. Zhu, H. Zhang, H. Shu, Z. Chen, Y. Zhang, Y. Zhang, B. Wang, C. Tang, X. Xie, G. Yu, Z. Jin, X. Liu, Temperature-dependent nitrogen configuration of N-doped graphene by chemical vapor deposition. Carbon 81, 814–820 (2015). https://doi.org/10.1016/j.carbon.2014.10.030

    Article  CAS  Google Scholar 

  30. J. Xiang, J. Li, X. Zhang, Q. Ye, J. Xua, X. Shenb, Magnetic carbon nanofibers containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and high-performance electromagnetic wave absorbers. J. Mater. Chem. A 2, 16905–16914 (2014). https://doi.org/10.1039/C4TA03732D

    Article  CAS  Google Scholar 

  31. A. Khalil, R. Hashaikeh, Electrospinning of nickel oxide nanofibers: process parameters and morphology control. Mater. Charact. 95, 65–71 (2014). https://doi.org/10.1016/j.matchar

    Article  CAS  Google Scholar 

  32. B. Kartick, S.K. Srivastava, A. Chandra, Graphene/Nickel Nanofiber Hybrids for Catalytic and Microbial Fuel Cell Applications. J. Nanosci. Nanotechnol 16, 303–311 (2016). https://doi.org/10.1166/jnn.2016.10667

    Article  CAS  Google Scholar 

  33. N. Wu, C. Liu, D. Xu, J. Liu, W. Liu, Q. Shao, Z. Guo, Enhanced Electromagnetic Wave absorption of three-dimensional porous Fe3O4/C composite flowers. ACS Sustainable Chem. Eng 6, 12471–12480 (2018). https://doi.org/10.1021/acssuschemeng.8b03097

    Article  CAS  Google Scholar 

  34. Y. Soumare, A. Dakhlaoui-Omrani, F. Schoenstein, S. Mercone, G. Viau, N. Jouini, Nickel nanofibers and nanowires: elaboration by reduction in polyol medium assisted by external magnetic field. Solid State Commun 151, 284–288 (2011). https://doi.org/10.1016/j.ssc.2010.12.004

    Article  CAS  Google Scholar 

  35. A.H. Morrish, Surface properties of small particles, Magnetic Properties of fine particles, (Science Direct, North-Holland Delta Series, 1992) pp. 181–190, https://doi.org/10.1016/B978-0-444-89552-3.50026-8

  36. A. Karaphun, S. Hunpratub, S. Phokha, T. Putjuso, E. Swatsitang, Characterization and magnetic properties of SrTi1 – xNixO3 nanoparticles prepared by hydrothermal method. Phys. B 504, 31–38 (2017). https://doi.org/10.1016/j.physb.2016.10.012

    Article  CAS  Google Scholar 

  37. N.A.M. Barakat, B. Kim, C. Yi, Y. Jo, M.H. Jung, K.H. Chu, H.Y. Kim, Influence of Cobalt Nanoparticles’ incorporation on the magnetic Properties of the Nickel Nanofibers: Cobalt-Doped Nickel Nanofibers prepared by Electrospinning. J. Phys. Chem. C 113, 19452–19457 (2009). https://doi.org/10.1021/jp905667s

    Article  CAS  Google Scholar 

  38. I.V. Beketov, A.P. Safronov, A.V. Bagazeev, A. Larrañaga, G.V. Kurlyandskaya, A.I. Medvedev, In situ modification of Fe and Ni magnetic nanopowders produced by the electrical explosion of wire. J. Alloys Compd. 586, 483–488 (2014). https://doi.org/10.1016/j.jallcom.2013.01.152

    Article  CAS  Google Scholar 

  39. A.D. Omrani, M.A. Bousnina, L.S. Smiri, M. Taibi, P. Leone, F. Schoensteinb, N. Jouini, Elaboration of nickel nanoparticles by modified polyol process and their spark plasma sintering, characterization and magnetic properties of the nanoparticles and the dense nanostructured material. Mater. Chem. Phys. 123, 821–828 (2010). https://doi.org/10.1016/j.matchemphys.2010.05.068

    Article  CAS  Google Scholar 

  40. S. Kumari, L.K. Pradhan, L. Kumar, M.K. Manglam, M. Kar, Effect of annealing temperature on morphology and magnetic properties of cobalt ferrite nanofibers. Mater. Res. Express (2019). https://doi.org/10.1088/2053-1591/ab5fa1

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Biju Pattnaik Research Fellowship (BPRF)—DST, Govt. of Odisha. The authors acknowledge Dr. Patitapaban Mishra, Department of Geology, of Ravenshaw University, Cuttack, for providing XRD facilities and Dr. Gopal K. Pradhan, Department of Physics, School of Applied Science, KIIT University, Bhubaneswar, for carrying out Raman measurements. The authors are grateful to Dr. Subasa Chandra Sahoo of the Department of Physics, Central University of Kerala, for providing the VSM facility.

Author information

Authors and Affiliations

Authors

Contributions

PPS: conceptualization, investigation of material preparation and characterization, writing the draft and editing, visualization. TKP: analysis of results, visualization. SR: investigation, resources for characterization. BS: supervision, conceptualization, editing, and reviewing the draft.

Corresponding author

Correspondence to Bibekananda Sundaray.

Ethics declarations

conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sethy, P.P., Pani, T.K., Rout, S. et al. Structural and magnetic properties of Ni/C core–shell nanofibers prepared by one step co-axial electrospinning method. J Mater Sci: Mater Electron 34, 807 (2023). https://doi.org/10.1007/s10854-023-10194-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10194-3

Navigation