Skip to main content

Advertisement

Log in

Numerical study of eco-friendly Sn-based Perovskite solar cell with 25.48% efficiency using SCAPS-1D

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

A Correction to this article was published on 30 March 2023

This article has been updated

Abstract

Today’s perovskite-based solar cells (PSCs) have become the fastest growing photovoltaic cells. The lead (Pb)-based PSCs attain the best efficiency, but despite their many advantages, these SCs have a major issue of its toxicity. The issue of toxicity is solved by using Pb-free perovskite material. Here, solar cell architecture comprising Pb-free perovskite, FTO/TiO2/CH3NH3SnI3/CZTS/Au is discussed. A fluorine-doped tin oxide (FTO) is used as a transparent conducting window layer and gold is used as a back contact. Titanium dioxide (TiO2) is used as an electron transport layer (ETL), while copper zinc tin sulfide (CZTS) is used as a hole transport layer (HTL). The PSC is simulated by using Solar Cell Capacitance Simulator (SCAPS-1D) software. The thickness of the absorber (CH3NH3SnI3) layer, ETL and HTL is varied. The operating temperature is also varied from 300 and 350 K. The best-chosen values of the acceptor density of absorber layer and HTL are 1016 cm−3 and 1019 cm−3, respectively, while the optimized donor density (ND) of ETL is 1020 cm−3. The solar cell performance decreases with the increase in defect density (Nt). The performances of solar cell with and without HTL are also discussed, and maximum efficiency is achieved after the introduction of HTL. The designed Sn-based PSC exhibits the highest efficiency of 25.48% with an open-circuit voltage = 0.99 V, short-circuit current = 32.95 mA/cm2 and fill factor = 77.77%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in this paper and on a request from the corresponding author.

Change history

References

  1. S.R.G. Weliwaththage, U.S.P.R. Arachchige, J. Res. Tech. Engg. 1, 67 (2020)

    Google Scholar 

  2. N.S. Kumar, K.C.B. Naidu, J. Materiomics 7, 940–956 (2021)

    Article  Google Scholar 

  3. Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Science 347, 967–970 (2015)

    Article  CAS  Google Scholar 

  4. H.J. Snaith, J. Phys. Chem. Lett. 4, 3623–3630 (2013)

    Article  CAS  Google Scholar 

  5. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050–6051 (2009)

    Article  CAS  Google Scholar 

  6. G.Y. Ashebir, C. Dong, Z. Wan, J. Qi, J. Chen, Q. Zhao, W. Chen, M. Wang, J. Phys. Chem. Solids 129, 204–208 (2019)

    Article  CAS  Google Scholar 

  7. W. Ke, G. Fang, Q. Liu, L. Xiong, P. Qin, H. Tao, J. Wang, H. Lei, B. Li, J. Wan, G. Yang, Y. Yan, J. Am. Chem. Soc. 137(21), 6730–6733 (2015)

    Article  CAS  Google Scholar 

  8. Y.H. Khattak, F. Baig, H. Toura, S. Beg, J. Electron. Mater. 48, 5723–5733 (2019)

    Article  CAS  Google Scholar 

  9. R.T. Zaïr, C. Oudjehani, K. Tighilt, J. Solar Energy Res. Updates 8, 21–26 (2021)

    Article  Google Scholar 

  10. U. Mandadapu, S.V. Vedanayakam, K. Thyagarajan, Ind. J. Sci. Tech. 10(11), 65–72 (2017)

    Google Scholar 

  11. I. Alam, M.A. Ashraf, Energy Sources Part A: Recovery Util. Environ. Eff. (2020). https://doi.org/10.1080/15567036.2020.1820628

    Article  Google Scholar 

  12. A.K. Singh, S. Srivastava, A. Mahapatra, J.K. Baral, B. Pradhan, Opt. Mater. 117, 111193 (2021)

    Article  CAS  Google Scholar 

  13. M.S. Islam, S. Rahman, A. Sunny, M.A. Haque, M.S. Mian, S.R. AlAhmed, Zeitschrift für Naturforschung A 76(11), 1045–1059 (2021)

    Article  CAS  Google Scholar 

  14. I. Qasim, O. Ahmad, A. Rashid, T. Zehra, M.I. Malik, M. Rashid, M.W. Ahmed, M.F. Nasir, Opt. Quantum Electron. 53(12), 1–18 (2021)

    Article  Google Scholar 

  15. P. Roy, S. Tiwari, A. Khare, Results Optics 4, 100083 (2021)

    Article  Google Scholar 

  16. A. Sunny, S. Rahman, M.M. Khatun, S.R. Al Ahmed, AIP Adv. 11, 065102 (2021)

    Article  CAS  Google Scholar 

  17. P.K. Patel, Sci. Rep. 11, 1–11 (2021)

    Article  CAS  Google Scholar 

  18. P. Roy, A. Khare, Mater. Today: Proc. 44, 2997–3000 (2021)

    CAS  Google Scholar 

  19. P. Srivastava, S. Rai, P. Lohia, D.K. Dwivedi, H. Qasem, A. Umar, S. Akbar, H. Algadi, S. Baskoutas, Phys. Scr. 97(12), 125004 (2022)

    Article  Google Scholar 

  20. H. Xu, R. Lang, C. Gao, W. Yu, W. Lu, S. Mohammadi, Surf. Interfaces 33, 102187 (2022)

    Article  CAS  Google Scholar 

  21. Q. Wu, C. Xue, Y. Li, P. Zhou, W. Liu, J. Zhu, S. Dai, C. Zhu, S. Yang, ACS Appl. Mater. Interfaces 7(51), 28466–28473 (2015)

    Article  CAS  Google Scholar 

  22. Y. Zuo, L. Chen, W. Jiang, B. Liu, C. Zeng, M. Li, X. Shi, Mater. Tech. 52(4), 483–486 (2018)

    CAS  Google Scholar 

  23. S.B. Patel, A.H. Patel, J.V. Gohel, CrystEngComm 20(47), 7677–7687 (2018)

    Article  CAS  Google Scholar 

  24. A. Yadav, P. Kumar, Int. J. Tech. Res. Engg. 2, 2642 (2015)

    Google Scholar 

  25. M. Burgelman, K. Decock, S. Khelifi, A. Abass, Thin Solid Films 535, 296–301 (2013)

    Article  CAS  Google Scholar 

  26. T. Ouslimane, L. Et-taya, L. Elmaimouni, A. Benami, Heliyon 7, e06379 (2021)

    Article  CAS  Google Scholar 

  27. K.D. Jayan, V. Sebastian, Sol. Energy 217(12), 40–48 (2021)

    Article  Google Scholar 

  28. M.K. Otoufi, M. Ranjbar, A. Kermanpur, N. Taghavinia, M. Minbashi, M. Forouzandeh, F. Ebadi, Sol. Energy 208, 697–707 (2020)

    Article  CAS  Google Scholar 

  29. P.S. Chudy, Z. Starowicz, G. Wisz, R. Yavorskyi, Z. Zapukhlyak, M. Bester, Ł Głowa, M. Sibiński, M. Cholewa, Mater. Res. Exp. 6, 085918 (2019)

    Article  Google Scholar 

  30. A.C. Piñón Reyes, R.C. AmbrosioLázaro, K.M. Leyva, J.A. Luna López, J. Flores Méndez, A.H. Heredia Jiménez, A.L. Muñoz Zurita, F. Severiano Carrillo, E. Ojeda Durán, Micromachines 12(12), 1508 (2021)

    Article  Google Scholar 

  31. U. Syafiq, N. Ataollahi, P. Scardi, Sol. Energy 196, 399–408 (2020)

    Article  CAS  Google Scholar 

  32. K. Chakraborty, M.G. Choudhury, S. Paul, Sol. Energy 194, 886–892 (2019)

    Article  CAS  Google Scholar 

  33. N. Khoshsirat, N.A.M. Yunus, M.N. Hamidon, S. Shafie, N. Amin, Optik 126(7–8), 681–686 (2015)

    Article  CAS  Google Scholar 

  34. S. Yasin, T. Al Zoubi, M. Moustafa, Optik 229, 166258 (2021)

    Article  CAS  Google Scholar 

  35. M. Bacha, A. Saadoune, I. Youcef, Opt. Mater. 122, 111734 (2021)

    Article  CAS  Google Scholar 

  36. P. Singh, N.M. Ravindra, Sol. Energy Mater. Sol. Cell. 101, 36–45 (2012)

    Article  CAS  Google Scholar 

  37. T.M. Koh, T. Krishnamoorthy, N. Yantara, C. Shi, W.L. Leong, P.P. Boix, A.C. Grimsdale, S.G. Mhaisalkar, N. Mathews, J. Mater. Chem. A 3, 14996–15000 (2015)

    Article  CAS  Google Scholar 

  38. A. Hima, N. Lakhdar, B. Benhaoua, A. Saadoune, I. Kemerchou, F. Rogti, Superlattice Microst. 129, 240 (2019)

    Article  CAS  Google Scholar 

  39. S. Abdelaziz, A. Zekry, A. Shaker, M. Abouelatta, Opt. Mater. 101, 109738 (2020)

    Article  CAS  Google Scholar 

  40. M. Kumar, A. Raj, A. Kumar, A. Anshul, Opt. Mater. 108, 110213 (2020)

    Article  CAS  Google Scholar 

  41. S. Ameen, M.S. Akhtar, H.S. Shin, M.K. Nazeeruddin, Adv. Inorg. Chem. 72, 185–246 (2018)

    Article  CAS  Google Scholar 

  42. E. Karimi, S.M. Ghorashi, J. Electron. Mater. 49, 364–376 (2020)

    Article  CAS  Google Scholar 

  43. M.A. Rahman, Opt. Mater. Exp. 12, 2954–2973 (2022)

    Article  CAS  Google Scholar 

  44. A. Sunny, S.R. Al Ahmed, Physica Status Solidi (B) 258, 2000630 (2021)

    Article  CAS  Google Scholar 

  45. A. Maiti, S. Chatterjee, A.J. Pal, A.C.S. Appl, Energy Mater. 3, 810–821 (2019)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thanks to Dr. Marc Burgelman, University of Gent, Belgium, for providing the SCAPS-1D simulation software.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The structure model and data collection and analysis were performed by RJ and RR. NS, AKS, MY, LC and RNT jointly reviewed and checked the procedures and results. The first draft of the manuscript was written by RJ and RR and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rajanish N. Tiwari.

Ethics declarations

Conflict of interest

All authors have read and agreed to the published version of the manuscript. The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaiswal, R., Ranjan, R., Srivastava, N. et al. Numerical study of eco-friendly Sn-based Perovskite solar cell with 25.48% efficiency using SCAPS-1D. J Mater Sci: Mater Electron 34, 753 (2023). https://doi.org/10.1007/s10854-023-10171-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10171-w

Navigation