Skip to main content
Log in

First principles calculations and analysis of electronic and optical structure of Ho-doped ZnO films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study First Principles calculations were carried out in order to analyze the effects of Ho-doping rate on the electronic and optical properties of ZnO films. The band structure, optical properties and density of states of Ho-doped ZnO with the doping rates of 0%, 1.38%, 1.85%, 2.78%, 4.17%, 6.25%, 12.5% and 25% were calculated and compared with our previous experimental results. XRD graphs showed that the Ho-doped ZnO had hexagonal structure with (101) preferential orientation. The optical band gap value for undoped ZnO firstly decreases to 3.055 eV for 1.38% Ho content, then starts to increase to the values of 3.109 eV and 3.177 eV for 1.85% and 2.77% Ho-ratios. Band gap decreases to 2.999 eV with 4% Ho-doping ratio again like the decrease in 1.38% Ho-content. Its observed that bandgap decreases with the decrease in a and b supercell parameters, the bandgap increases with the decrease on c supercell parameter, to verify that the %6.25, %12.5 and %25 doping rates are also studied and the bandgap kept increasing to 3.071 eV for %6.25 Ho-doping rate, 3.147 eV for %12.5 Ho-doping rate. The last calculation for %25 Ho-doping rate showed that the bandgap decreased to 2.727 eV. The optical calculations revealed that Ho-doping leds to blue shift and red shifts in optical absorption, transmittance, dielectric function, reflectivity, refractive index, extinction coefficient, optical conductivity, and loss function characterizations. Result shows that ZnO can be healed by Ho-doping and the calculations carried out by First principles are in a good harmony with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article

References

  1. H.-I. Chen, J.-J. Hsiao, C.-H. Fang, J.-A. Jiang, J.-C. Wang, Y.-F. Wu, T.-E. Nee, J. Lumin 190, 136–140 (2017)

    Article  CAS  Google Scholar 

  2. Z. Chun-Ying, W. Jing, B. Yue-Lei, Chin. Phys B 19, 047101 (2010)

    Article  Google Scholar 

  3. L. Prasanna, V.R. Vijayaraghavan, Mater. Sci. Eng., C 77, 1027–1034 (2017)

    Article  Google Scholar 

  4. A. Khayatiana, V. Asgaria, A. Ramazania, S.F. Akhtarianfar, M.A. Kashia, S. Safa, Mater. Res. Bull 94, 77–84 (2017)

    Article  Google Scholar 

  5. Y. Chen, L. Wang, W. Wang, M. Cao, Mater. Chem. Phys 199, 416–423 (2017)

    Article  CAS  Google Scholar 

  6. J. Ding, H. Chen, H. Fu, Mater. Res. Bull 95, 185–189 (2017)

    Article  CAS  Google Scholar 

  7. E.V. Kolobkova, S.K. Evstropiev, N.V. Nikonorov, V.N. Vasilyev, K.S. Evstropyev, Opt. Mater 73, 712–717 (2017)

    Article  CAS  Google Scholar 

  8. E.F. Keskenler, G. Turgut, S. Aydın, R. Dilber, U. Turgut, J. Ovo. Res. 9, 61–71 (2013)

    CAS  Google Scholar 

  9. A.G. El Hachimi, H. Zaari, A. Benyoussef, M. El Yadari, A. El Kenz, J. Rare Earths 32, 715 (2014)

    Article  Google Scholar 

  10. S. Aydin, G. Turgut, Appl. Phys. A 9, 61–71 (2019)

    Google Scholar 

  11. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, M.C. Payne, Z. für Kristallographie 220(5–6), 567–570 (2005)

    Article  CAS  Google Scholar 

  12. Z. Ma, F. Ren, X. Ming, Y. Long, A. Volinsky, Materials 12, 196 (2018)

    Article  Google Scholar 

  13. D.M. Song, J.C. Li, Comput. Mater. Sci. 65, 175–181 (2012)

    Article  CAS  Google Scholar 

  14. S. Fan, Z. Liu, Z. Li, Polytech. Univ. 32, 114–117 (2013)

    Google Scholar 

  15. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson, APL Mater 1, 011002 (2013)

    Article  Google Scholar 

  16. J. Wen, J. Zhang, Z. Qiu, Phys. B Condens. Matter 534, 44–50 (2018)

    Article  CAS  Google Scholar 

  17. S.Q. Guo, Q.-Y. Hou, C.-W. Zhao, F. Mao, Acta Phys. Sin 63, 107101 (2014)

    Article  Google Scholar 

  18. M. Yu, S. Yang, C. Wu et al., Comput. Mater. 6, 180 (2020). https://doi.org/10.1038/s41524-020-00446-9

    Article  CAS  Google Scholar 

  19. P.P. Pradyumnan, A. Paulson, M. Sabeer N. A. and N. Deepthy, AIP Conf. Proc. 1832, 110055 (2017)

    Article  Google Scholar 

  20. A. Ekicibil, Solid State Sci 14, 1486–1491 (2012)

    Article  CAS  Google Scholar 

  21. A. Khataee, S. Saadi, B. Vahid, S.W. Joo, J. Ind. Eng. Chem 35, 167–176 (2016)

    Article  CAS  Google Scholar 

  22. B. Demirselcuk, V. Bilgin, Appl. Surf. Sci. 273, 478–483 (2013)

    Article  CAS  Google Scholar 

  23. R.A. Mereu, A. Mesaros, M. Vasilescu, M. Popa, M.S. .Gabor, L. Ciontea, T.Petrisor Ceramics International 39, 5535–5543 (2013)

    Article  CAS  Google Scholar 

  24. M. Leclerc, G. D’aprano, G. Zotti, Synth. Met. 55, 1527–1532 (1993). https://doi.org/10.1016/0379-6779(93)90279-6

    Article  CAS  Google Scholar 

Download references

Funding

Serdar AYDIN declares that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

SA is only the author who study conception and design. Material preparation, data collection and analysis were performed by SA. The manuscript was written and controlled by SA.

Corresponding author

Correspondence to S. Aydin.

Ethics declarations

Competing interest

Serdar AYDIN has no relevant financial or non-financial interests to disclose

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydin, S. First principles calculations and analysis of electronic and optical structure of Ho-doped ZnO films. J Mater Sci: Mater Electron 34, 771 (2023). https://doi.org/10.1007/s10854-023-10168-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10168-5

Navigation