Skip to main content
Log in

Ambipolar 2,2,6,6-tetramethylpiperidinyloxyl and unipolar KI/VOSO4 redox additives performance for ZnNH4PO4 @ carbon hollow sphere for battery-supercapacitor hybrid device

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present investigation, as newly synthesized carbon hollow sphere (CHS) through hydrothermal process has been intercalated with as-synthesized zinc ammonium phosphate (ZnAP) @ four mass variates. The physicochemical (XRD, FTIR, Raman, SEM) and electrochemical characterizations (CV, GCD, and EIS) confirm the appropriate mass concentration of 75 mg CHS intercalated ZnAP (ZnAPCS3) enhancing the requisite properties needed for device applications in pure H2SO4. This selective hybrid composite optimization furtherance is improved by adding ambipolar redox additive [2,2,6,6-tetramethylpiperidinyloxyl (TEMPO)] in H2SO4, and the same is studied by adding unipolar redox additive in the same H2SO4 separately and their performances are reported as a first-time investigation. In half-cell studies, the specific capacity is found to be 1023 C g−1 @ 1 A g−1 in ambipolar added 2 M H2SO4, whereas it is found to be 1399 C g−1 in unipolar added. In full-cell studies, the ambipolar-based ZnAPCS3 (positrode)//reduced graphene oxide (negatrode) device delivers 268 C g−1 @ 1 A g −1 (48 Wh kg−1/320 W kg−1), whereas unipolar-based delivers 570 C g−1 (93 Wh kg−1/282 W kg−1) in the referenced potential window 0–1.8 V with their respective capacity retentions 94% for the former and 80% for the latter noted for 5000 cycles. Thus, the physicochemical/electrochemical investigations reveal the concentration dependency of CHS @ ZnAP and its performance on unipolar as well as ambipolar in H2SO4 for Ba-EC hybrid device applications are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets analysed during the current study are available from the corresponding author on reasonable request.

References

  1. V. Augustyn, P. Simon, B. Dunn, Energy Environ. Sci. 7, 1597 (2014)

    Article  CAS  Google Scholar 

  2. Q. Ke, J. Wang, J. Mater. 2, 37 (2016)

    Google Scholar 

  3. L. Kouchachvili, W. Yaïci, E. Entchev, J. Power Sources 374, 237 (2018)

    Article  CAS  Google Scholar 

  4. F. Ju, Q. Zhang, W. Deng, J. Li, Advances in battery manufacturing, service, and management systems (Wiley, Hoboken, 2016), p.303

    Book  Google Scholar 

  5. J. Zhang, X.S. Zhao, Chemsuschem 5, 818 (2012)

    Article  CAS  Google Scholar 

  6. G.Z. Chen, Int. Mater. Rev. 62, 173 (2017)

    Article  CAS  Google Scholar 

  7. B. Sun, Y. Li, J. Mater. Chem. C 10, 388 (2022)

    Article  CAS  Google Scholar 

  8. H. Hosseini, S. Shahrokhian, Appl. Mater. Today 10, 72 (2018)

    Article  Google Scholar 

  9. H. Hosseini, S. Shahrokhian, Chem. Eng. J. 341, 10 (2018)

    Article  CAS  Google Scholar 

  10. S. Rahimi, S. Shahrokhian, H. Hosseini, J. Electroanal. Chem. 810, 78 (2018)

    Article  CAS  Google Scholar 

  11. H. Hosseini, S. Shahrokhian, Self-supported nanoporous Zn–Ni–Co/Cu selenides microball arrays for hybrid energy storage and electrocatalytic water/urea splitting. Chem. Eng. J. (2019). https://doi.org/10.1016/j.cej.2019.122090

    Article  Google Scholar 

  12. F. Hekmat, H. Hosseini, S. Shahrokhian, H.E. Unalan, Energy Storage Mater. 25, 621 (2020)

    Article  Google Scholar 

  13. E. Jokar, S. Shahrokhian, A.I. Zad, E. Asadian, H. Hosseini, J. Energy Storage 17, 465 (2018)

    Article  Google Scholar 

  14. S. Najib, E. Erdem, Nanoscale Adv. 1, 2817 (2019)

    Article  Google Scholar 

  15. H. Zhao, Y. Lan, J. Feng, Y. Zong, X. Li, Y. Du, Y. Sun, X. Zheng, Y. Wang, Nanoscale 10, 11775 (2018)

    Article  Google Scholar 

  16. E.C. Vermisoglou, P. Jakubec, A. Bakandritsos, V. Kupka, M. Pykal, V. Šedajová, J. Vlček, O. Tomanec, M. Scheibe, R. Zbořil, M. Otyepka, Chemsuschem 14, 3904 (2021)

    Article  CAS  Google Scholar 

  17. X. Li, A.M. Elshahawy, C. Guan, J. Wang, Small 13, 1 (2017)

    Google Scholar 

  18. X. Li, X. Xiao, Q. Li, J. Wei, H. Xue, H. Pang, Inorg. Chem. Front. 5, 11 (2018)

    Article  CAS  Google Scholar 

  19. C. Young, T. Park, J.W. Yi, J. Kim, M.S.A. Hossain, Y.V. Kaneti, Y. Yamauchi, Chemsuschem 11, 3546 (2018)

    Article  CAS  Google Scholar 

  20. M.Z. Iqbal, M.M. Faisal, S.R. Ali, A.M. Afzal, J. Electroanal. Chem. 871, 114299 (2020)

    Article  CAS  Google Scholar 

  21. S. Alam, M.Z. Iqbal, J. Khan, Int. J. Energy Res. 45, 11109 (2021)

    Article  CAS  Google Scholar 

  22. H.J. Denisa, A.M. Puziy, O.I. Poddubnaya, S.G. Fabian, J.M.D. Tascón, G.Q. Lu, J. Am. Chem. Soc. 131, 5026 (2009)

    Article  Google Scholar 

  23. X. Wu, X. Yang, W. Feng, X. Wang, Z. Miao, P. Zhou, J. Zhao, J. Zhou, S. Zhuo, Nanomaterials (2021). https://doi.org/10.3390/nano11112838

    Article  Google Scholar 

  24. T.A. Raja, P. Vickraman, Int. J. Energy Res. 12, 1 (2022)

    Google Scholar 

  25. K. Nasrin, S. Gokulnath, M. Karnan, K. Subramani, M. Sathish, Energy Fuels 35, 6465 (2021)

    Article  CAS  Google Scholar 

  26. W. Qin, N. Zhou, C. Wu, M. Xie, H. Sun, Y. Guo, L. Pan, ACS Omega 5, 3801 (2020)

    Article  CAS  Google Scholar 

  27. M. Tian, J. Wu, R. Li, Y. Chen, D. Long, Chem. Eng. J. 363, 183 (2019)

    Article  CAS  Google Scholar 

  28. B. Akinwolemiwa, C. Peng, G.Z. Chen, J. Electrochem. Soc. 162, A5054 (2015)

    Article  CAS  Google Scholar 

  29. S.E. Chun, B. Evanko, X. Wang, D. Vonlanthen, X. Ji, G.D. Stucky, S.W. Boettcher, Nat. Commun. 6, 1 (2015)

    Google Scholar 

  30. L. Hu, T. Zhai, H. Li, Y. Wang, Chemsuschem 12, 1118 (2019)

    Article  CAS  Google Scholar 

  31. L. Hu, C. Shi, K. Guo, T. Zhai, H. Li, Y. Wang, Angew. Chemie Int. Ed. 57, 8214 (2018)

    Article  CAS  Google Scholar 

  32. H.X. Xiaoming Zhou, H. Bai, H. Ma, H. Li, W. Yuan, H. Du, P. Zhang, Mater. Charact. 108, 22 (2015)

    Article  Google Scholar 

  33. X. Sun, Y. Li, Angew. Chemie Int. Ed. 43, 597 (2004)

    Article  Google Scholar 

  34. Z. Zhu, S. Tang, J. Yuan, X. Qin, Y. Deng, R. Qu, G.M. Haarberg, Int. J. Electrochem. Sci. 11, 8270 (2016)

    Article  CAS  Google Scholar 

  35. J. Chen, B. Yao, C. Li, G. Shi, Carbon 64, 225 (2013)

    Article  CAS  Google Scholar 

  36. Y. Mi, W. Hu, Y. Dan, Y. Liu, Mater. Lett. 62, 1194 (2008)

    Article  CAS  Google Scholar 

  37. G. Chen, H. Guan, C. Dong, Y. Wang, Ionics (Kiel). 24, 513 (2018)

    Article  CAS  Google Scholar 

  38. X. Yang, Z. Zhang, Y. Fu, Q. Li, Nanoscale 7, 10198 (2015)

    Article  CAS  Google Scholar 

  39. X. Xiao, B. Han, G. Chen, L. Wang, Y. Wang, Sci. Rep. 7, 1 (2017)

    Article  Google Scholar 

  40. R. Kripal, M.G. Misra, I.E. Lipinski, C. Rudowicz, Phys. Scr. (2012). https://doi.org/10.1088/0031-8949/86/04/045602

    Article  Google Scholar 

  41. U. Holzwarth, N. Gibson, Nat. Publ. Gr. 6, 534 (2011)

    CAS  Google Scholar 

  42. K. Wenelska, A. Ottmann, P. Schneider, E. Thauer, R. Klingeler, E. Mijowska, Energy 103, 100 (2016)

    Article  CAS  Google Scholar 

  43. P. Liu, B. Zhu, X. Yuan, G. Tong, Y. Su, X. Zhu, J. Mater. Chem. B 3, 1301 (2015)

    Article  CAS  Google Scholar 

  44. G. Berhault, P. Afanasiev, H. Loboué, C. Geantet, T. Cseri, C. Pichon, G.D. Catherine, A. Lafond, Inorg. Chem. 48, 2985 (2009)

    Article  CAS  Google Scholar 

  45. D.B. Schuepfer, F. Badaczewski, J.M. Guerra-Castro, D.M. Hofmann, C. Heiliger, B. Smarsly, P.J. Klar, Carbon 161, 359 (2020)

    Article  CAS  Google Scholar 

  46. M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cançado, A. Jorio, R. Saito, Phys. Chem. Chem. Phys. 9, 1276 (2007)

    Article  CAS  Google Scholar 

  47. H. Mao, F. Zhang, X. Liu, J. Qiu, B. Li, Z. Jin, J. Mater. Sci. Mater. Electron. 29, 16721 (2018)

    Article  CAS  Google Scholar 

  48. X. Wu, K. Gong, G. Zhao, W. Lou, X. Wang, W. Liu, RSC Adv. 8, 4595 (2018)

    Article  CAS  Google Scholar 

  49. A.A. Mirghni, M.J. Madito, K.O. Oyedotun, T.M. Masikhwa, N.M. Ndiaye, S.J. Ray, N. Manyala, RSC Adv. 8, 11608 (2018)

    Article  CAS  Google Scholar 

  50. B.J. Jones, J.J. Ojeda, Surf. Interface Anal. 44, 1187 (2012)

    Article  CAS  Google Scholar 

  51. M. Li, W. Li, S. Liu, Carbohydr. Res. 346, 999 (2011)

    Article  CAS  Google Scholar 

  52. H. Qiu, X. Sun, S. An, D. Lan, J. Cui, Y. Zhang, W. He, J. Colloid Interface Sci. 567, 264 (2020)

    Article  CAS  Google Scholar 

  53. D. Ye, R. Qu, S. Liu, C. Zheng, X. Gao, ACS Omega 4, 4927 (2019)

    Article  CAS  Google Scholar 

  54. M. Guo, S. Wang, L. Zhao, Z. Guo, Electrochim. Acta 292, 299 (2018)

    Article  CAS  Google Scholar 

  55. D. Cabrera-German, G. Molar-Velázquez, G. Gómez-Sosa, W. de la Cruz, A. Herrera-Gomez, Surf. Interface Anal. 49, 1078 (2017)

    Article  CAS  Google Scholar 

  56. D. Zhang, C. Du, J. Chen, Q. Shi, Q. Wang, S. Li, W. Wang, X. Yan, Q. Fan, J. Sol-Gel Sci. Technol. 88, 422 (2018)

    Article  CAS  Google Scholar 

  57. A.R. Selvaraj, I.S. Raja, D. Chinnadurai, R. Rajendiran, I. Cho, D.W. Han, K. Prabakar, J. Energy Storage 46, 103731 (2022)

    Article  Google Scholar 

  58. S.J. Marje, V.V. Patil, V.G. Parale, H.H. Park, P.A. Shinde, J.L. Gunjakar, C.D. Lokhande, U.M. Patil, Chem. Eng. J. 429, 132184 (2022)

    Article  CAS  Google Scholar 

  59. A.S. Justin, P. Vickraman, B.J. Reddy, Curr. Appl. Phys. 19, 295 (2019)

    Article  Google Scholar 

  60. M. Li, W. Li, S. Liu, J. Mater. Res. 27, 1117 (2012)

    Article  CAS  Google Scholar 

  61. Y. Jiang, J. Liu, Energy Environ. Mater. 2, 30 (2019)

    Article  Google Scholar 

  62. A.S. Justin, P. Vickraman, B.J. Reddy, J. Electroanal. Chem. 823, 342 (2018)

    Article  Google Scholar 

  63. S.Y. Attia, S.G. Mohamed, Y.F. Barakat, H.H. Hassan, W. Al Zoubi, Rev. Inorg. Chem. 42, 53 (2022)

    Article  CAS  Google Scholar 

  64. M.Z. Iqbal, J. Khan, H.T.A. Awan, M. Alzaid, A.M. Afzal, S. Aftab, Dalt. Trans. 49, 16715 (2020)

    Article  CAS  Google Scholar 

  65. S. Pandey, S. Neupane, D.K. Gupta, A.K. Das, N. Karki, S. Singh, R.J. Yadav, A.P. Yadav, Front. Chem. Eng. 3, 1 (2021)

    Article  Google Scholar 

  66. M. Opitz, J. Yue, J. Wallauer, B. Smarsly, B. Roling, Electrochim. Acta 168, 125 (2015)

    Article  CAS  Google Scholar 

  67. J. Lee, P. Srimuk, S. Fleischmann, X. Su, T.A. Hatton, V. Presser, Prog. Mater. Sci. 101, 46 (2019)

    Article  CAS  Google Scholar 

  68. B. Wang, J.A. Maciá-Agulló, D.G. Prendiville, X. Zheng, D. Liu, Y. Zhang, S.W. Boettcher, X. Ji, G.D. Stucky, J. Electrochem. Soc. 161, A1090 (2014)

    Article  CAS  Google Scholar 

  69. D. Xu, W. Hu, X.N. Sun, P. Cui, X.Y. Chen, J. Power Sources 341, 448 (2017)

    Article  CAS  Google Scholar 

  70. R.L. Blrke, M.-H. Kim, M. Strassfeld, Anal. Chem 53, 852 (1981)

    Article  Google Scholar 

  71. M.M. Sundaram, T. Watcharatharapong, S. Chakraborty, R. Ahuja, S. Duraisamy, P.T. Rao, N. Munichandraiah, Dalton Trans. 44, 20108–20120 (2015). https://doi.org/10.1039/C5DT03394B

    Article  CAS  Google Scholar 

  72. D. Jain, J. Kanungo, Appl. Phys. A 124, 14 (2018)

    Article  Google Scholar 

  73. S.T. Senthilkumar, R.K. Selvan, Y.S. Lee, J.S. Melo, J. Mater. Chem. A 1, 1086 (2013)

    Article  CAS  Google Scholar 

  74. E. Frackowiak, K. Fic, M. Meller, G. Lota, Chemsuschem 5, 1181 (2012)

    Article  CAS  Google Scholar 

  75. T.A. Raja, P. Vickraman, A.S. Justin, B.J. Reddy, J. Mater. Sci. 55, 14447 (2020)

    Article  CAS  Google Scholar 

  76. L.Q. Fan, J. Zhong, J.H. Wu, J.M. Lin, Y.F. Huang, J. Mater. Chem. A 2, 9011 (2014)

    Article  CAS  Google Scholar 

  77. D.A. Harrington, P. Van Den Driessche, Electrochim. Acta 56, 8005 (2011)

    Article  CAS  Google Scholar 

  78. M.E.R. Solmaz, M.E. Mert, G. Kardaş, B. Yazici, Acta Physico-Chimica Sin. 24, 1185 (2008)

    Article  CAS  Google Scholar 

  79. W. Franks, I. Schenker, P. Schmutz, A. Hierlemann, IEEE Trans. Biomed. Eng. 52, 1295 (2005)

    Article  Google Scholar 

  80. E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy Theory, Experiment, and Applications, Secons Edi (John Wiley & Sons Inc, Hoboken, New Jersey, 2010)

    Google Scholar 

  81. B. Evanko, S.W. Boettcher, S.J. Yoo, G.D. Stucky, ACS Energy Lett. 2, 2581 (2017)

    Article  CAS  Google Scholar 

  82. F. Hekmat, S. Shahrokhian, H. Hosseini, Compos. Part B Eng. 172, 41 (2019)

    Article  CAS  Google Scholar 

  83. S. Alam, M.Z. Iqbal, Ceram. Int. 47, 11220 (2021)

    Article  CAS  Google Scholar 

  84. K. Weber, S.E. Creager, Anal. Chem. 66, 3164 (1994)

    Article  CAS  Google Scholar 

  85. R. El Hage, F. Chauvet, B. Biscans, L. Cassayre, L. Maurice, T. Tzedakis, Chem. Eng. Sci. 199, 123 (2019)

    Article  Google Scholar 

  86. T.A. Raja, P. Vickraman, A.S. Justin, B.J. Reddy, J. Mater. Sci.: Mater. Electron. 33, 7079–7098 (2022). https://doi.org/10.1007/s10853-020-05032-4

    Article  CAS  Google Scholar 

  87. M.Z. Iqbal, U. Aziz, J. Energy Storage 46, 103823 (2022)

    Article  Google Scholar 

  88. M. Rapisarda, A. Damasco, G. Abbate, M. Meo, ACS Omega 5, 32426 (2020)

    Article  CAS  Google Scholar 

  89. J. Lee, A. Tolosa, B. Krüner, N. Jäckel, S. Fleischmann, M. Zeiger, D. Kim, V. Presser, Sustain. Energy Fuels 1, 299 (2017)

    Article  CAS  Google Scholar 

  90. K. Subramani, S. Shunmugasundaram, V. Duraisamy, R. Ilavarasi, S.M. Kumar, M. Sathish, J. Colloid Interface Sci. 606, 286 (2022)

    Article  CAS  Google Scholar 

  91. C. Portet, G. Yushin, Y. Gogotsi, Carbon 45, 2511 (2007)

    Article  CAS  Google Scholar 

  92. Y.C. Chen, L.Y. Lin, J. Colloid Interface Sci. 537, 295 (2019)

    Article  CAS  Google Scholar 

  93. J. Zhong, L.Q. Fan, X. Wu, J.H. Wu, G.J. Liu, J.M. Lin, M.L. Huang, Y.L. Wei, Electrochim. Acta 166, 150 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Central Laboratory for Instrumentation and Facilitation (CLIF), Trivandrum, for XPS analysis, and DST—Sophisticated Analytical Instrument Facilities (SAIF), Cochin, for TEM Imaging.

Author information

Authors and Affiliations

Authors

Contributions

TAR helped in conceptualization, formal analysis, writing—original draft, and resources. PV contributed to investigation, supervision, writing—review editing, and project administration.

Corresponding author

Correspondence to Palanisamy Vickraman.

Ethics declarations

Conflict of interest

The authors reported no possible conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1275 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raja, T.A., Vickraman, P. Ambipolar 2,2,6,6-tetramethylpiperidinyloxyl and unipolar KI/VOSO4 redox additives performance for ZnNH4PO4 @ carbon hollow sphere for battery-supercapacitor hybrid device. J Mater Sci: Mater Electron 34, 734 (2023). https://doi.org/10.1007/s10854-023-10165-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10165-8

Navigation