Skip to main content

Advertisement

Log in

Facile fabrication of CdS and CdSe quantum dots sensitized solar cells with TiO2 nanocrystals/nanorods electron transport scaffold and SiO2 passivating film

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study CdS and CdSe quantum dot sensitized solar cells (QDSCs) were fabricated using a double layer electron transport TiO2 scaffold. This mesoporous film was composed of a nanocrystalline TiO2 layer decorated with an interestingly formed TiO2 nanorods (NRs) over-film. The nanorods layer were hydrothermally grown on the basis of the underlying TiO2 nanoparticles and grown on random directions with interfaces which were clearly shown in the SEM images. The main target was to obtain the maximum ability of energy conversion for the QDSC with proposed photoanode structure. The thickness of transparent nanocrystalline sublayer and overgrown TiO2 NRs were measured about 5.0 and 2.0 µm, respectively. The CdS QDs film was deposited through successive ionic layer adsorption and reaction technique. The CdSe film was also efficiently formed in a short time by chemical bath deposition method. The back-recombination blocking ZnS and SiO2 layers were also applied for higher improvement. The cells were finally assembled using polysulfide electrolyte and CuS counter electrode. Different structural and optical analyses were performed at different stages on the photoanodes and finally the photovoltaic characterizations were carried out. The QDSCs were fabricated with and without CdSe and SiO2 films to show the effect of double sensitization and passivation. According to the results, the CdSe co-sensitizing QDs layer could improve the power conversion efficiency of the cells up to 19%. Besides, the SiO2 second passivating film could enhance the photovoltaic performance by 17% based on the performed measurements. The maximum efficiency was finally obtained about 3.7% and belonged to the QDSC with TiO2 NCs/NRs/CdS/CdSe/ZnS/SiO2 photoanode structure. This could be justified and compared with the performance of other photoanode structures based on the lower surface area but the higher light scattering in this double layer nanostructured TiO2 scaffold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

We confirm that all data and information are mentioned in this article and whole information for the interested readers are available.

References

  1. B. O’Regan, M. Gratze, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 film. Nature 353, 737–740 (1991)

    Article  Google Scholar 

  2. S. Ananthakumar, D. Balaji, R. Ram Kumar et al., Role of co-sensitization in dye-sensitized and quantum dot-sensitized solar cells. SN Appl. Sci. 1, 186 (2019)

    Article  CAS  Google Scholar 

  3. M.J.C. Burgos, S. Roa, B. Cerda, P. Manidurai, Effects of PbS-NPs doping on the photovoltaic performance of natural dye-sensitized TiO2 photoelectrodes. Solid State Commun. 340, 114523 (2021)

    Article  Google Scholar 

  4. S. Rühle, M. Shalom, A. Zaban, Quantum-dot-sensitized solar cells. Chem. Phys. Chem. 11(11), 2290–2304 (2010)

    Article  Google Scholar 

  5. H. Ren, A. Xu, Y. Pan, D. Qin, L. Hou, D. Wang, Efficient PbS quantum dot solar cells with both Mg-doped ZnO window layer and ZnO nanocrystal interface passivation layer. Nanomaterials (Basel) 11(1), 219 (2021)

    Article  CAS  Google Scholar 

  6. J. Tian, G. Cao, Semiconductor quantum dot-sensitized solar cells. Nano Rev. 4, 22578 (2013). https://doi.org/10.3402/nano.v4i09

    Article  Google Scholar 

  7. V.M. Rama Krishna, R.A. Friesner, Quantum confinement effects in semiconductor clusters. J. Chem. Phys 95, 8309 (1991)

    Article  Google Scholar 

  8. G. Liu, S. Ji, G. Xu, C. Ye, Interface engineering: boosting the energy conversion efficiencies for nanostructured solar cells. Pure Appl. Chem 84, 2653–2675 (2012)

    Article  CAS  Google Scholar 

  9. K.S. Kim, S. Park, M.-K. Son, H.-J. Kim, Ammonia treated ZnO nanoflowers based CdS/CdSe quantum dot sensitized solar cell. Electrochim. Acta 151, 531–536 (2015)

    Article  CAS  Google Scholar 

  10. M. Kim, A. Ochirbat, J.H. Lee, CuS/CdS quantum dot composite sensitizer and its applications to various TiO2 mesoporous film-based solar cell devices. Langmuir 31(27), 7609–7615 (2015)

    Article  CAS  Google Scholar 

  11. J. Tian, E. Uchaker, Q. Zhang, G. Cao, Hierarchically structured ZnO nanorods-nanosheets for improved quantum-dot-sensitized solar cells. ACS Appl. Mater. Interfaces 6(6), 4466–4472 (2014)

    Article  CAS  Google Scholar 

  12. S.K. Kim, C.J. Raj, H.J. Kim, CdS/CdSe quantum dot-sensitized solar cells based on ZnO nanoparticle/nanorod composite electrodes. Electron. Mater. Lett. 10, 1137–1142 (2014)

    Article  CAS  Google Scholar 

  13. H. Wang, M. Desbordes, Y. Xiao, T. Kubo, K. Tada, T. Bessho, J. Nakazaki, H. Segawa, Highly stable interdigitated PbS quantum dot and ZnO nanowire solar cells with an automatically embedded electron-blocking layer. ACS Appl. Energy Mater. 4(6), 5918–5926 (2021)

    Article  CAS  Google Scholar 

  14. T.V. Chebrolu, H.J. Kim, Recent progress in quantum dot sensitized solar cells: an inclusive review of photoanode, sensitizer, electrolyte, and the counter electrode. J. Mater. Chem. C 7, 4911–4933 (2019)

    Article  CAS  Google Scholar 

  15. S. Pradhan, A. Stavrinadis, S. Gupta, G. Konstantatos, Reducing interface recombination through mixed nanocrystal interlayers in PbS quantum dot solar cells. ACS Appl. Mater. Interfaces 9(33), 27390–27395 (2017)

    Article  CAS  Google Scholar 

  16. M. Marandi, F.S. Mirahmadi, Aqueous synthesis of the CdTe NCs and influence of size on photovoltaic performance of the CdS/CdTe co-sensitized solar cells. Alloys Compd. 800, 140–149 (2019)

    Article  CAS  Google Scholar 

  17. G. Wang, H. Wei, Y. Luo, H. Wu, D. Li, X. Zhong, Q. Meng, A strategy to boost the cell performance of CdSexTe1_x quantum dot sensitized solar cells over 8% by introducing Mn modified CdSe coating layer. Power Sources. 302, 266–273 (2016)

    Article  CAS  Google Scholar 

  18. Z. Pan, K. Zhao, J. Wang, H. Zhang, Y. Feng, X. Zhong, Near infrared absorption of CdSe(x)Te(1–x) alloyed quantum dot sensitized solar cells with more than 6% efficiency and high stability. ACS Nano 7, 5215–5222 (2013)

    Article  CAS  Google Scholar 

  19. X. Zhang, Y. Lin, J. Wu, J. Jing, B. Fang, Improved performance of CdSe/CdS/PbS co-sensitized solar cell with double-layered TiO2 films as photoanode. Opt. Commun 395, 117–121 (2016)

    Article  Google Scholar 

  20. Z. Yang, C.Y. Chen, W.C. Liu, T.H. Chang, Electrocatalytic sulfur electrodes for CdS/CdSe quantum. Chem. Commun. 46, 5485–5487 (2010)

    Article  CAS  Google Scholar 

  21. F. Khodama, A. Amani-Ghadim, S. Aberac, Preparation of CdS quantum dot sensitized solar cell based on ZnTi-layered double hydroxide photoanode to enhance photovoltaic properties. Sol. Energy 181, 325–332 (2019)

    Article  Google Scholar 

  22. S. Rühle, S. Yahav, Sh. Greenwald, A. Zaban, Importance of recombination at the TCO/electrolyte interface for high efficiency quantum dot sensitized solar cells. J. Phys. Chem. C 116(33), 17473–17478 (2012)

    Article  Google Scholar 

  23. V. Jovanovski, V. González-Pedro, S. Giménez, E. Azaceta, G. Cabañero, H. Grande, R. Tena-Zaera, I. Mora-Seró, J. Bisquert, A sulfide/polysulfide-based ionic liquid electrolyte for quantum dot-sensitized solar cells. J. Am. Chem. Soc 133(50), 20156–20159 (2011)

    Article  CAS  Google Scholar 

  24. A.L. King, W. Hao, L. Danos, D.J. Riley, Activation of CdSe quantum dots after exposure to polysulfide. Phys. Chem. C 118(26), 14555–14561 (2014)

    Article  CAS  Google Scholar 

  25. Y.-Y. Yang, Q.-X. Zhang, T.-Z. Wang, L.-F. Zhu, X.-M. Huang, Y.-D. Zhang, X. Hu, D.-M. Li, Y.-H. Luo, Q.-B. Meng, Novel tandem structure employing mesh-structured Cu2S counter electrode for enhanced performance of quantum dot-sensitized solar cells. Electrochim. Acta 88, 44–50 (2013)

    Article  CAS  Google Scholar 

  26. Ch. K. Kamaja, R. R. Devarapalli, Dave, J. Debgupta M V. Shelke” Synthesis of novel Cu2S nanohusks as high performance counter electrode for CdS/CdSe sensitized solar cell” Power Sources 315 (2016) 277e283.

  27. V.H.V. Quy, J.-H. Kim, S.-H. Kang, C.-J. Choi, J.A. Rajesh, K.-S. Ahn, Enhanced electrocatalytic activity of electrodeposited F-doped SnO2/Cu2S electrodes for quantum dot-sensitized solar cells. Power Sources 316, 53–59 (2016)

    Article  Google Scholar 

  28. T. Toyoda, Q. Shen, Quantum-dot-sensitized solar cells: effect of nanostructured TiO2 morphologies on photovoltaic properties. J. Phys. Chem. Lett 3, 1885 (2012)

    Article  CAS  Google Scholar 

  29. J. Tian, E. Uchaker, Q. Zhang, G. Cao, “Hierarchically structured ZnO nanorods-nanosheets for improved quantum-dot-sensitized solar cells. ACS Appl. Mater. Interfaces 6, 4466 (2014)

    Article  CAS  Google Scholar 

  30. S.Y. Chae, J.Y. Hwang, O.S. Joo, Role of HA additive in quantum dot solar cell with Co [(bpy)3]2+/3+-based electrolyte. RSC Adv. 4, 26907–26911 (2014)

    Article  CAS  Google Scholar 

  31. S. Ananthakumar, D. Balaji, J. Ram Kumar et al., Role of co-sensitization in dye-sensitized and quantum dot-sensitized solar cells. SN Appl Sci 1, 186 (2019)

    Article  CAS  Google Scholar 

  32. A.M. Siguan, D. Becker-Koch, A.D. Taylor, Q. Qing Sun, V. Vincent Lami, P.G. Oppenheimer, F. Paulus, Y. Yana Vaynzof, Efficient and stable PbS quantum dot solar cells by triple-cation Perovskite passivation. ACS Nano 14(1), 384–393 (2020)

    Article  Google Scholar 

  33. A. Roy, P. Das, M. Tathavadekar, S. Das, P.S. Devi, Performance of colloidal CdS sensitized solar cells with ZnO nanorods/nanoparticles. Beilstein J. Nanotechnol. 8, 210–221 (2017)

    Article  CAS  Google Scholar 

  34. J. Qi, W. Liu, C. Biswas, G. Zhang, L. Sun, Z. Wang, X. Hu, Y. Zhang, Enhanced power conversion efficiency of CdS quantum dot sensitized solar cells with ZnO nanowire arrays as the photoanodes. Optics Commun. 349, 19 (2015)

    Article  Google Scholar 

  35. R. Zhou et al., Influence of deposition strategies on CdSe quantum dot-sensitized solar cells: a comparison between successive ionic layer adsorption and reaction and chemical bath deposition. J. Mater. Chem. A 3, 12539–21254 (2015)

    Article  CAS  Google Scholar 

  36. L. Yue, H. Rao, J. Du, Z. Pan, J. Yu, X. Zhong, Comparative advantages of Zn–Cu–In–S alloy QDs in the construction of quantum dot-sensitized solar cells. RSC Adv 8, 3637–3645 (2018)

    Article  CAS  Google Scholar 

  37. F. He, W. Wang, W. Xue, Y. Xie, Q. Zhou, J. Zhang, Y. Li, Al/Zn co-incorporated Cu–In–Se quantum dots for high efficiency quantum dot sensitized solar cells. New J. Chem 44, 4304–4310 (2020)

    Article  CAS  Google Scholar 

  38. M.G.P. Stolle, C.J. Reid, D.K. Rhee, D.J. Harvey, T.B. Akhavan, V.A. Yu, Y. Korgel, CuInSe2 quantum dot solar cells with high open-circuit voltage. J. Phys. Chem. Lett. 4, 2030–2034 (2013)

    Article  Google Scholar 

  39. F. Huang, J. Hou, Q.F. Zhang, Y. Wang, R.C. Masse, S.L. Peng, H.L. Wang, J.S. Liu, G.Z. Cao, Doubling the power conversion efficiency in CdS/CdSe quantum dot sensitized solar cells with a ZnSe passivation layer. Nano Energy 26, 114–122 (2016)

    Article  CAS  Google Scholar 

  40. M. Marandi, M. Nazari, Application of TiO2 hollow spheres and ZnS/SiO2 double-passivaiting layers in the photoanode of the CdS/CdSe QDs sensitized solar cells for the efficiency enhancement. Sol. Energy 216, 48–60 (2021)

    Article  CAS  Google Scholar 

  41. D.M. Li, L.Y. Cheng, Y.D. Zhang, Q.X. Zhang, X.M. Huang, Y.H. Luo et al., Development of Cu2S/carbon composite electrode for CdS/CdSe quantum dot sensitized solar cell modules. Sol Energy Mater. Sol. Cells 120, 454 (2014)

    Article  CAS  Google Scholar 

  42. K. Zhao, Z. Pan, I. Mora-Sero, E. Canovas, H. Hai Wang, Y. Song, X. Gong, J. Wang, M. Bonn, J. Bisquert et al., Boosting power conversion efficiencies of quantum-dot sensitized solar cells beyond 8% by recombination control. J. Am. Chem. Soc. 137, 5602–5609 (2015)

    Article  CAS  Google Scholar 

  43. Z. Ren, J. Wang, Z. Pan, K. Zhao, H. Zhang, Y. Li, Y. Zhao, I.M. Sero, J. Bisquert, X. Zhong, Amorphous TiO2 buffer layer boosts efficiency of quantum dot sensitized solar cells to over 9%. Chem. Mater 27, 8398–8405 (2015)

    Article  CAS  Google Scholar 

  44. L. Yu, Z. Li, Synthesis of ZnxCd1-xSe@ZnO hollow spheres in different sizes for quantum dots sensitized solar cells application. Nanomaterials (Basel) 9(2), 132 (2019)

    Article  CAS  Google Scholar 

  45. J. Khanam, Y. Simon, Y. Zhibin, L. Tianhan, M. Pengsu, Efficient, stable, and low-cost PbS quantum dot solar cells with Cr–Ag electrodes. Nanomaterials 9, 1205–1216 (2019)

    Article  CAS  Google Scholar 

  46. A. Manjceevan, J. Bandara, Systematic stacking of PbS/ CdS/CdSe multi-layered quantum dots for the enhancement of solar cell efficiency by harvesting wide solar spectrum. Electrochim. Acta 271, 567–575 (2018)

    Article  CAS  Google Scholar 

  47. F. Huang et al., Impacts of surface or interface chemistry of ZnSe passivation layer on the performance of CdS/CdSe quantum dot sensitized solar cells. Nano Energy 32, 433–440 (2017)

    Article  CAS  Google Scholar 

  48. X. Zhong et al., High-quality violet- to red-emitting ZnSe/CdSe core/shell nanocrystals. Chem. Mater 17(16), 4038–4042 (2017)

    Article  Google Scholar 

  49. L. Dongmei, Q. Meng, Composite counter electrode based on nanoparticulate PbS and carbon black: towards quantum dot-sensitized solar cells with both high efficiency and stability. ACS Appl. Mater. Interfaces 4(11), 6162–6168 (2012)

    Article  Google Scholar 

  50. H. Juan, H. Zhao, F. Huang, L. Chen, W. Qiang, L. Zhiyong, P. Shanglong, N. Wang, C. Guozhong, Facile one-step fabrication of CdS 0.12 Se 0.88 quantum dots with a ZnSe/ ZnS-passivation layer for highly efficient quantum dot sensitized solar cells. J. Mater. Chem. A 6(21), 9866–9873 (2018)

    Article  Google Scholar 

  51. M.C. Beard, Multiple exciton generation in semiconductor quantum dots. Phys. Chem. Lett. 2, 1282–1288 (2011)

    Article  CAS  Google Scholar 

  52. Z. Pan, I. Mora- Sero, Q. Shen, H. Zhang, Y. Li, K. Zhao, J. Wang, X. Zhong, J. Bisquert, High-efficiency “green” quantum dot solar cells. J. Am. Chem. Soc 136(25), 9203–9210 (2014)

    Article  CAS  Google Scholar 

  53. Z.F. Liu, M. Miyauchi, Y. Uemura, Y. Cui, K. Hara, Z.G. Zhao, K. Sunahara, A. Furube, Enhancing the performance of quantum dots sensitized solar cell by SiO2 surface coating. Appl. Phys. Lett. 96, 233107 (2010)

    Article  Google Scholar 

  54. F. Khodam, A.R. Amani-Ghadim, S. Aber, Mg nanoparticles core-CdS QDs shell heterostructures with ZnS passivation layer for efficient quantum dot sensitized solar cell. Electrochim. Acta 308, 25–34 (2019)

    Article  CAS  Google Scholar 

  55. H.J. Kim et al., Improved photovoltaic performance and stability of quantum dot sensitized solar cells using Mn-ZnSe shell structure with enhanced light absorption and recombination control. Nanoscale 7, 12552–12563 (2015)

    Article  Google Scholar 

  56. J. Kim, H. Choi, C. Nahm, J. Moon, C. Kim, S. Nam, D.R. Jung, B. Park, The effect of a blocking layer on the photovoltaic performance in CdS quantum dot sensitized solar cells. Power Sources 196, 10526–10531 (2011)

    Article  CAS  Google Scholar 

  57. Z. Li, L. Yu, H. Wang, H. Yang, H. Ma, TiO2 passivation layer on ZnO hollow microspheres for quantum dots sensitized solar cells with improved light harvesting and electron collection. Nanomaterials (Basel) 10(4), 631 (2020)

    Article  CAS  Google Scholar 

  58. N. Chaurasiya, U. Kumar, S. Sikarwar, B.C. Yadav, P.K. Yadawa, Growth of rutile TiO2 nanorods on TiO2 seed layer prepared using facile low cost chemical methods. Mater. Lett. 116, 191–194 (2014)

    Article  Google Scholar 

  59. M. Marandi, F.F. Ahangarani, M. Davoudi, Fabrication of submicron/micron size cavities included TiO2 photoelectrodes and optimization of light scattering to improve the photovoltaic performance of CdS quantum dot sensitized solar cells. Electroanal. Chem. 799, 167–174 (2017)

    Article  CAS  Google Scholar 

  60. M. Naeimi Sani Sabet, M. Marandi, F. Ahmadlou, Fabrication of dye sensitized solar cells with different photoanode compositions using hydrothermally grown and P25 TiO2 nanocrystals. Eur. Phys. J. Appl. Phys. 69, 20401 (2015)

    Article  Google Scholar 

  61. D. Wu, X. Shi, H. Dong, F. Zhu, K. Jiang, D. Xu, X. Ai, J. Zhang, The effect of photoanode structure on the performances of quantum-dot-sensitized solar cells: a case study of the anatase TiO2 nanocrystals and polydisperse mesoporous spheres hybrid photoanodes. Mater. Chem. A 2, 16276–16284 (2014)

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by MN. The first draft of the manuscript was written by Dr. MM and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Maziar Marandi.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marandi, M., Nazari, M. Facile fabrication of CdS and CdSe quantum dots sensitized solar cells with TiO2 nanocrystals/nanorods electron transport scaffold and SiO2 passivating film. J Mater Sci: Mater Electron 34, 834 (2023). https://doi.org/10.1007/s10854-023-10162-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10162-x

Navigation