Skip to main content
Log in

Electronic, nano-dielectric, mass and fluorescence spectral characterizations of 2-amino 4-methyl pyridinium fumarate novel crystals for use in opto-electronics and electronic displays

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The 2-amino 4-methyl pyridinium fumarate—AMPF crystals are successfully grown by the traditional slow evaporation solution growth method; the solubility curve represents the data for the variety of temperature scales. Single XRD data reveal that the AMPF crystalline specimen is monoclinic in nature. The mass spectral study provides the molecular mass value which is found to 224.513 for the as-grown crystals. The optical study represents the UV cut-off wavelength as 255 nm; after 320 nm, the absorbance value is nearly nullified and is the expected property for good non-linear optical (NLO) specimen; the refranging property tells that the fluorescence emission wavelength is 396 nm with a band gap of 3.1313 eV for violet emission and for value of excitation at 294 nm. The morphological picture of AMPF is shown by SEM micrograph; the hardness contour for AMPF delineates the value of n as 3.59 and is of Reverse Indentation Size Effect (RISE); the AMPF crystalline specimen is found to exhibit negative type of photoconductivity and based on Miller’s projection may practice for display devices with NLO data for opto-electronic with coupling enhancing provision and in nano-dielectrics for micro-electronic sectors utility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

All the data are included and no separate repository or representation of data.

References

  1. R. Sathishkumar et al., Optik (2020). https://doi.org/10.1016/j.ijleo.2020.165947

    Article  Google Scholar 

  2. K. Kumar et al., J. Mater. Sci.: Mater. Electron. 31, 20816–20823 (2020). https://doi.org/10.1007/s10854-020-04594-y

    Article  CAS  Google Scholar 

  3. S. Gunasekaran, K. SenthilKannan, S. Loganathan, Indian J. Phys. 87, 1189–1197 (2013). https://doi.org/10.1007/s12648-013-0363-8

    Article  CAS  Google Scholar 

  4. T. Kaino, B. Cai, K. Takayama, Adv. Funct. Mater. 12, 599–603 (2002). https://doi.org/10.1002/1616-3028(20020916

    Article  CAS  Google Scholar 

  5. M.U. Meier, C. Bosche, F. Bosshard, P. Gunter Pan, J. Appl. Phys. 83, 3486–3489 (1998). https://doi.org/10.1063/1.366560

    Article  CAS  Google Scholar 

  6. H. Unver, A. Karakas, T.N. Durlu, J. Mol. Struct. 737, 131–137 (2005). https://doi.org/10.1016/j.molstruc.2004.10.016

    Article  CAS  Google Scholar 

  7. A. Schneider, M. Neis, M. Stillhart, B. Ruiz, R.U.A. Khan, P. Gunter, J. Opt. Soc. Am. Opt. Phys. 23, 1822–1835 (2006). https://doi.org/10.1364/JOSAB.23.001822

    Article  CAS  Google Scholar 

  8. S.R. Marder, J.W. Perry, W.P. Schaefer, Science 245, 626–628 (1989). https://doi.org/10.1126/science.245.4918.626

    Article  CAS  Google Scholar 

  9. T. Sujatha, A. Cyrac Peter, M. Vimalan, J. Merline Shyla, J. Madhavan, Physica B 405, 3365–3370 (2010). https://doi.org/10.1016/j.physb.2010.05.006

    Article  CAS  Google Scholar 

  10. K.J. Arun, S. Jayalekshmi, J. Miner. Mater. Charact. Eng. 8, 635–646 (2009). https://doi.org/10.4236/jmmce.2009.88055

    Article  Google Scholar 

  11. Sonia et al., J. Phys. Chem. Solids 129, 401–412 (2019). https://doi.org/10.1016/j.jpcs.2019.02.002

    Article  CAS  Google Scholar 

  12. S. Dhanuskodi, S. Manivannan, J. Cryst. Growth 262, 395–398 (2013). https://doi.org/10.1016/j.jcrysgro.2003.10.088

    Article  CAS  Google Scholar 

  13. S. Gunasekaran, K. SenthilKannan, K.A. Seethalakshmi, Int. J. Sci. Eng. Res. 4, 2–4 (2013)

    Google Scholar 

  14. K SenthilKannan, Int. J. Eng. Sci. Math. 7, 1291–1292 (2018)

    Google Scholar 

  15. K. SenthilKannan et al., Int. J. ChemTech Res. 6, 3187–3190 (2014)

    CAS  Google Scholar 

  16. K. SenthilKannan, S. Gunasekaran, Int. J. Front. Sci. Technol. 3, 29–36 (2013)

    Google Scholar 

  17. K. Senthilkannan et al., Arch. Appl. Sci. Res. 5, 100–103 (2013)

    Google Scholar 

  18. G. Flora et al., Mater. Today 33, 4233–4236 (2020). https://doi.org/10.1016/j.matpr.2020.07.347

    Article  CAS  Google Scholar 

  19. K. Senthilkannan, P. Baskaran, N. Renuka, P. Settu, Mater. Today 33, 4145–4147 (2020). https://doi.org/10.1016/j.matpr.2020.06.582

    Article  CAS  Google Scholar 

  20. K. Senthilkannan, P. Baskaran, N. Renuka, P. Settu, Mater. Today 33, 4148–4150 (2020). https://doi.org/10.1016/j.matpr.2020.06.585

    Article  CAS  Google Scholar 

  21. P. Periyathambi et al., Mater. Today 33, 3766–3769 (2020). https://doi.org/10.1016/j.matpr.2020.06.208

    Article  CAS  Google Scholar 

  22. G. Flora et al., Mater. Today 33, 3578–3582 (2020). https://doi.org/10.1016/j.matpr.2020.05.656

    Article  CAS  Google Scholar 

  23. I. Amenabar, S. Poly, W. Nuansing, E.H. Hubrich, A.A. Govyadinov, F. Huth, R. Krutokhvostov, L. Zhang, M. Knez, J. Heberle, A.M. Bittner, R. Hillenbrand, Nat. Commun. 4, 1–9 (2013). https://doi.org/10.1038/ncomms3890

    Article  CAS  Google Scholar 

  24. M. Meena, C.K. Mahadevan, Mater. Lett. 62(21), 3742–3744 (2008). https://doi.org/10.1016/j.matlet.2008.04.047

    Article  CAS  Google Scholar 

  25. M. Meena, C. Mahadevan, Cryst. Res. Technol. (2008). https://doi.org/10.1002/crat.200711064

    Article  Google Scholar 

  26. K.C. Kao, Dielectric Phenomena in Solids (Academic Press, New York, 2004)

    Google Scholar 

  27. D.K. Sagdullina, I.E. Kuznetsov, A.V. Akkuratov, L.I. Kuznetsova, S.I. Troyanov, P.A. Troshin, Synth. Met. 250, 7–11 (2019)

    Article  CAS  Google Scholar 

  28. A. Oueslati, F. Hlel, K. Guidara, M. Gargouri, J. Alloys Compd. 492(1–2), 508–514 (2010)

    Article  CAS  Google Scholar 

  29. K. SenthilKannan, Results Chem. (2022). https://doi.org/10.1016/j.rechem.2022.100424

    Article  Google Scholar 

  30. A.G. Lone, R.N. Bhowmik, AIP Adv. 5, 047117 (2015)

    Article  Google Scholar 

  31. C.G. Koops, Phys. Rev. 83, 121 (1951)

    Article  CAS  Google Scholar 

  32. E.M. Mohammad, K.A. Malins, P. Kurian, M.R. Anantharaman, Mater. Res. Bull. 37, 753 (2002)

    Article  Google Scholar 

  33. H.G. Zhang, J. Zhou, Y. Wang, L.T. Li, Z.X. Yue, Mater. Lett. 55, 351–355 (2002)

    Article  CAS  Google Scholar 

  34. G. Uzma, Chin. Phys. B 23(5), 057502 (2014)

    Article  Google Scholar 

  35. C. Prakash, J.S. Baijal, J. Less Common Met. 107, 51 (1985)

    Article  CAS  Google Scholar 

  36. G. Sathishkumar, C. Venkataraju, R. Murugaraj, K. Sivakumar, J. Mater. Sci.: Mater. Electron. 23, 243 (2012)

    CAS  Google Scholar 

  37. A. Thakur, P. Mathur, M. Singh, J. Phys. Chem. Solids 68, 378–381 (2007)

    Article  CAS  Google Scholar 

  38. J. Parashar, V.K. Saxena, Jyoti, D. Bhatnagar, K.B. Sharma, J. Magn. Magn. Mater. 394, 105 (2015)

    Article  CAS  Google Scholar 

  39. L.L. Hench, J.K. West, Principles of Electronic Ceramics (Wiley, New York, 1990)

    Google Scholar 

  40. N.Y. Maharani, A. Cyrac Peter, S. Gopinath, S. Tamilselvan, M. Vimalan, I. Vetha Potheher, J. Mater. Sci.: Mater. Electron. 27(No.5), 5006–5015 (2016)

    CAS  Google Scholar 

  41. M. Pollak, Proceedings of the International Conference on Physics of Semiconductors, Exeter  (1962), p. 86

  42. A.M. Abo El Ata, M.K. El Nimra, S.M. Attia, D. El Kony, A.H. Al-Hammadi, J. Magn. Magn. Mater. 297, 33 (2006)

    Article  CAS  Google Scholar 

  43. H.M. Zaki, J. Alloys Compd. 439, 1 (2007)

    Article  CAS  Google Scholar 

  44. M.A. Ahmed, E. Ateia, S.I. El-Dek, J. Mater. Lett. 57, 4256 (2003)

    Article  CAS  Google Scholar 

  45. H. Bottger, V.V. Bryksin, Hopping Conduction in Solids (Akademie Verlag, Berlin, 1985)

    Book  Google Scholar 

  46. H.M. Zaki, Physica B 363, 232 (2005)

    Article  CAS  Google Scholar 

  47. R.P. Mahajan, K.K. Patankar, M.B. Kothale, S.A. Patil, Conduct. Bull. Mater. Sci. 23(4), 273 (2000)

    Article  CAS  Google Scholar 

  48. J.R. Macdonald, Emphasizing Solid State Material and Systems, Ch. 2 and Ch.4 (Wiley, New York, 1987)

    Google Scholar 

  49. S. Abed, H. Bougharraf, K. Bouchouit, Z. Sofiani, B. Derkowska-Zielinska, M.S. Aida, B. Sahraoui, Superlattice Microstruct. 85, 370 (2015)

    Article  CAS  Google Scholar 

  50. R. Ertuğrul, A. Tataroglu, Chin. Phys. Lett. 7, 077 (2012)

    Google Scholar 

  51. R. Senthilkumar, K. Senthilkannan, S. Udhayakumar, S.T. Aadithya Narayanan, Mater. Today 33, 4167 (2020). https://doi.org/10.1016/j.matpr.2020.06.594

    Article  CAS  Google Scholar 

  52. K. Senthilkannan, B.K. Khan, H.A.J. Ali, V.K. Ponnusamy, N.M. Govindan, Mater. Today 33, 2779 (2020). https://doi.org/10.1016/j.matpr.2020.02.133

    Article  CAS  Google Scholar 

  53. K. SenthilKannan, R. Krishnaveni, D. Anbuvel, V.M. Porselvi, H.A.J. Ali, Mater. Today 33, 2776 (2020). https://doi.org/10.1016/j.matpr.2020.02.132

    Article  CAS  Google Scholar 

  54. K. Suganya, J. Maalmarugan, R. Manikandan et al., J. Mater. Sci.: Mater. Electron. 33, 19320 (2022). https://doi.org/10.1007/s10854-022-08770-0

    Article  CAS  Google Scholar 

  55. V. Sathiya, K. Suganya, K. SenthilKannan et al., J. Mater. Sci.: Mater. Electron. 33, 19514 (2022). https://doi.org/10.1007/s10854-022-08787-5

    Article  CAS  Google Scholar 

  56. X. Vasanth Winston, D. Sankar, K. SenthilKannan et al., J. Mater. Sci.: Mater. Electron. (2022). https://doi.org/10.1007/s10854-022-08873-8

    Article  Google Scholar 

  57. V. Kalaipoonguzhali, S. Surendarnath, M. Vimalan et al., J. Mater. Sci.: Mater. Electron. 34, 107 (2023)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank St. Joseph’s College for the studies and IITM for data and Phoenix Institute for electronic studies.

Funding

The paper attracts no funding and is authors’ own funding for this studies contributing paper.

Author information

Authors and Affiliations

Authors

Contributions

RH contributed to XRD and FL data. KSR provided mass spectral data and performed proof reading. ZAV provided hardness and UV data. KSK contributed to growth, computational, SEM, photoconductivity, write-up, and submission.

Corresponding author

Correspondence to K. SenthilKannan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

No living organism is reported here; only materials for electronic applications are enabled.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hariharasuthan, R., Radha, K.S., Abdul Vaheith, Z. et al. Electronic, nano-dielectric, mass and fluorescence spectral characterizations of 2-amino 4-methyl pyridinium fumarate novel crystals for use in opto-electronics and electronic displays. J Mater Sci: Mater Electron 34, 743 (2023). https://doi.org/10.1007/s10854-023-10158-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10158-7

Navigation