Skip to main content
Log in

Flower-like shapes M-PbS (M = Li, na, or Cs)/porous CuO photocatalytic electrode for converting sewage water into H2 fuel gas

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work studies the preparation of M-PbS (M = Li, Na, or Cs) on porous CuO (P-CuO) as a photoelectrode for H2 gas production under sewage water splitting. The preparation of P-CuO was carried out in our previous study (Abdelazeez et al in Appl Phys 128:1–10, 2022). The preparation of M-PbS is performed using the hydrothermal method, and then it is cast on P-CuO and dried at 70 °C for 30 min. The chemical structure of M-PbS materials was confirmed through XRD and XPS analyses. Moreover, the morphologies were confirmed using SEM and TEM analyses. These analyses confirmed the formation of quantum dot particles that sometimes agglomerate to form nanoparticles that look like flower shapes. The calculated bandgap values are 1.03, 1.05, 1.06, and 1.07 eV for Cs-PbS, Na-PbS, PbS, and Li-PbS, respectively. The application for the H2 generation test is carried out using three-electrode cells with sewage water (pH 7.2) as an electrolyte without using any extra electrolytes. The effect of light on/off was studied, and the produced current density (Jph) values were − 1.3 and − 3.42 mA cm− 2, respectively. The effect of temperature (25 to 40 °C) is demonstrated by testing the produced Jph, which increased with increasing temperature from 3.06 to 3.48 mA cm− 2, respectively. The calculated thermodynamic parameters were calculated in which the produced Ea, ΔH*, and ΔS* values were 6.55 KJ mol− 1, 4.02 kJ mol− 1, and 221 JK− 1 mol− 1, respectively. Soon our team works on developing a prototype of an electrochemical cell that can convert the sewage water into H2 gas fuel directly for applying inside houses for cooking and worming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. A.A.A. Abdelazeez, N.M.A. Hadia, M. Alzaid, M. Shaban, A.-H.I. Mourad, S. Fernández, M. Rabia, Development of CuO nanoporous material as a highly efficient optoelectronic device. Appl. Phys. 128, 4 (2022). https://doi.org/10.1007/S00339-022-05447-7

    Article  Google Scholar 

  2. A.A.A. Abdelazeez, A.B.G. Trabelsi, F.H. Alkallas, M. Rabia, Successful 2D MoS2 nanosheets synthesis with SnSe grid-like nanoparticles: photoelectrochemical hydrogen generation and solar cell applications. Sol. Energy 248, 251–259 (2022). https://doi.org/10.1016/J.SOLENER.2022.10.058

    Article  CAS  Google Scholar 

  3. A.A.A. Abdelazeez, G.A. El-Fatah, M. Shaban, A.M. Ahmed, M. Rabia, Poly-3-Methylaniline/Au electrode for electrochemical water splitting and dye removal. ECS J. Solid State Sci. Technol. 10, 123009 (2021). https://doi.org/10.1149/2162-8777/AC3D1A

    Article  CAS  Google Scholar 

  4. S.H. Mohamed, H. Zhao, H. Romanus, F.M. El-Hossary, M. Abo, M.A. EL-Kassem, M. Awad, Y. Rabia, Lei, Optical, water splitting and wettability of titanium nitride/titanium oxynitride bilayer films for hydrogen generation and solar cells applications. Mater. Sci. Semicond. Process. 105, 104704 (2020). https://doi.org/10.1016/j.mssp.2019.104704

    Article  CAS  Google Scholar 

  5. F. Mohamed, M. Rabia, M. Shaban, Synthesis and characterization of biogenic iron oxides of different nanomorphologies from pomegranate peels for efficient solar hydrogen production. J. Mater. Res. Technol. 9, 4255–4271 (2020). https://doi.org/10.1016/j.jmrt.2020.02.052

    Article  CAS  Google Scholar 

  6. M. Shaban, S. Ali, M. Rabia, Design and application of nanoporous graphene oxide film for CO2, H2, and C2H2 gases sensing. J. Mater. Res. Technol. (2019). https://doi.org/10.1016/j.jmrt.2019.07.064

    Article  Google Scholar 

  7. A.M.A. Asmaa, M. Elsayed, M. Rabia, M. Shaban, H. Arafa, Aly, Preparation of hexagonal nanoporous Al2O3/TiO2/TiN as a novel photodetector with high efficiency. Sci. Rep. 11(1), 17572 (2021)

    Article  Google Scholar 

  8. H. Nishiyama, T. Yamada, M. Nakabayashi, Y. Maehara, M. Yamaguchi, Y. Kuromiya, Y. Nagatsuma, H. Tokudome, S. Akiyama, T. Watanabe, R. Narushima, S. Okunaka, N. Shibata, T. Takata, T. Hisatomi, K. Domen, Photocatalytic solar hydrogen production from water on a 100–m2 scale. Nature (2021). https://doi.org/10.1038/s41586-021-03907-3

    Article  Google Scholar 

  9. K.D.T. Hisatomi, Reaction systems for solar hydrogen production via water splitting with particulate semiconductor. Nat. Catal. 2, 387–399 (2019). https://doi.org/10.1038/s41929-019-0242-6

    Article  CAS  Google Scholar 

  10. M. Pagliaro, Preparing for the future: solar energy and bioeconomy in the United Arab Emirates. Energy Sci. Eng. 7, 1451–1457 (2019). https://doi.org/10.1002/ese3.440

    Article  Google Scholar 

  11. T. Takata, Photocatalytic water splitting with quantum efficiency of almost unity. Nature. 581, 411–414 (2020). https://doi.org/10.1038/s41586-020-2278-9

    Article  CAS  Google Scholar 

  12. Z. Kang, Y. Cheng, Z. Zheng, F. Cheng, Z. Chen, L. Li, X. Tan, L. Xiong, T. Zhai, Y. Gao, MoS2-Based photodetectors powered by asymmetric contact structure with large work function difference. Nano-Micro Lett. 11, 1–12 (2019). https://doi.org/10.1007/s40820-019-0262-4

    Article  CAS  Google Scholar 

  13. J.H. Lee, W.W. Lee, D.W. Yang, W.J. Chang, S.S. Kwon, W. Il Park, anomalous photovoltaic response of Graphene-on-GaN Schottky Photodiodes. ACS Appl. Mater. Interfaces 10, 14170–14174 (2018). https://doi.org/10.1021/acsami.8b02043

    Article  CAS  Google Scholar 

  14. O. Portillo Moreno, L.A. Chaltel Lima, M. Chávez Portillo, S. Rosas Castilla, M. Zamora Tototzintle, G. Abarca, R. Ávila Gutiérrez Pérez, Properties of PbS: Ni2+ nanocrystals in thin films by chemical bath deposition. ISRN Nanotechnol. (2012). https://doi.org/10.5402/2012/546027

    Article  Google Scholar 

  15. J. Akhtar, M. Azad Malik, P. O’Brien, K.G.U. Wijayantha, R. Dharmadasa, S.J.O. Hardman, D.M. Graham, B.F. Spencer, S.K. Stubbs, W.R. Flavell, D.J. Binks, F. Sirotti, M. El Kazzi, M. Silly, A greener route to photoelectrochemically active PbS nanoparticles. J. Mater. Chem. 20, 2336–2344 (2010). https://doi.org/10.1039/B924436K

    Article  CAS  Google Scholar 

  16. M. Suganya, S. Anitha, D. Prabha, S. Balamurugan, J. Srivind, A.R. Balu, Enhanced photocatalytic and antifungal properties of Sr-doped PbS nanopowders. Mater. Technol. 33, 214–219 (2017). https://doi.org/10.1080/10667857.2017.1396777

    Article  CAS  Google Scholar 

  17. A.A. Bakulin, S. Neutzner, H.J. Bakker, L. Ottaviani, D. Barakel, Z. Chen, Charge trapping dynamics in PbS colloidal quantum dot photovoltaic devices. ACS Nano. 7, 8771–8779 (2013). https://doi.org/10.1021/NN403190S

    Article  CAS  Google Scholar 

  18. M.H. Patel, T.K. Chaudhuri, V.K. Patel, T. Shripathi, U. Deshpande, N.P. Lalla, Dip-coated PbS/PVP nanocomposite films with tunable band gap. RSC Adv. 7, 4422–4429 (2017). https://doi.org/10.1039/C6RA25935A

    Article  CAS  Google Scholar 

  19. I. Dobryden, B. Touati, A. Gassoumi, A. Vomiero, N. Kamoun, N. Almqvist, Morphological and electrical characterization of Cu-doped PbS thin films with AFM. Adv. Mater. Lett. 8, 1029–1037 (2017). https://doi.org/10.5185/AMLETT.2017.1545

    Article  CAS  Google Scholar 

  20. Y. Gülen, Synthesis and characterization of Iron-doped lead sulfide thin films, metallurgical and materials transactions. Phys. Metall. Mater. Sci. 46, 4698–4704 (2015). https://doi.org/10.1007/S11661-015-3065-3/FIGURES/5

    Article  Google Scholar 

  21. B. Touati, A. Gassoumi, N. Kamoun Turki, Structural, optical and electrical properties of Ag doped PbS thin films: role of ag concentration. J. Mater. Sci.: Mater. Electron. 28, 18387–18395 (2017). https://doi.org/10.1007/S10854-017-7785-6/TABLES/3

    Article  CAS  Google Scholar 

  22. R. Palomino-Merino, O. Portillo-Moreno, L.A. Chaltel-Lima, R. Gutiérrez Pérez, M. De Icaza-Herrera, V.M. Castaño, Chemical bath deposition of PbS:Hg2+ nanocrystalline thin films. J. Nanomater. (2013). https://doi.org/10.1155/2013/507647

    Article  Google Scholar 

  23. M.C. Portillo, O.P. Moreno, R.G. Pérez, R.P. Merino, H.S. Juarez, S.T. Cuapa, E.R. Rosas, Characterization and growth of doped-PbS in situ with Bi3+, Cd2+ and Er3+ ions by chemical bath. Mater. Sci. Semicond. Process. 72, 22–31 (2017). https://doi.org/10.1016/J.MSSP.2017.09.012

    Article  CAS  Google Scholar 

  24. R. Sakthi Sudar Saravanan, M. Meena, D. Pukazhselvan, C.K. Mahadevan, Structural, optical and electrical characterization of Mn2+ and Cd2+ doped/co-doped PbS nanocrystals. J. Alloys Compd. 627, 69–77 (2015). https://doi.org/10.1016/J.JALLCOM.2014.12.008

    Article  CAS  Google Scholar 

  25. C.H. Hsu, C.H. Chen, D.H. Chen, Decoration of PbS nanoparticles on Al-doped ZnO nanorod array thin film with hydrogen treatment as a photoelectrode for solar water splitting. J. Alloys Compd. 554, 45–50 (2013). https://doi.org/10.1016/J.JALLCOM.2012.11.192

    Article  CAS  Google Scholar 

  26. H. Zhao, L. Jin, Y. Zhou, A. Bandar, Z. Fan, A.O. Govorov, Z. Mi, S. Sun, F. Rosei, A. Vomiero, Green synthesis of near infrared core/shell quantum dots for photocatalytic hydrogen production. Nanotechnology (2016). https://doi.org/10.1088/0957-4484/27/49/495405

    Article  Google Scholar 

  27. X.F. Shi, X.Y. Xia, G.W. Cui, N. Deng, Y.Q. Zhao, L.H. Zhuo, B. Tang, Multiple exciton generation application of PbS quantum dots in ZnO@PbS/graphene oxide for enhanced photocatalytic activity. Appl. Catal. B: Environ. 163, 123–128 (2015). https://doi.org/10.1016/J.APCATB.2014.07.054

    Article  CAS  Google Scholar 

  28. G.F. Teixeira, E. Silva Junior, R. Vilela, M.A. Zaghete, F. Colmati, Perovskite structure Associated with precious Metals: influence on heterogenous catalytic process. Catalysts 9, 721 (2019). https://doi.org/10.3390/catal9090721

    Article  CAS  Google Scholar 

  29. M. Mishra, D.M. Chun, α-Fe2O3 as a photocatalytic material: a review. Appl. Catal. A: Gen. 498, 126–141 (2015). https://doi.org/10.1016/j.apcata.2015.03.023

    Article  CAS  Google Scholar 

  30. C. Acar, I. Dincer, G.F. Naterer, Review of photocatalytic water-splitting methods for sustainable hydrogen production. Int. J. Energy Res. 40, 1449–1473 (2016). https://doi.org/10.1002/er.3549

    Article  CAS  Google Scholar 

  31. C.Y. Chiang, K. Aroh, N. Franson, V.R. Satsangi, S. Dass, S. Ehrman, Copper oxide nanoparticle made by flame spray pyrolysis for photoelectrochemical water splitting – part II. Photoelectrochemical study. Int. J. Hydrog. Energy 36, 15519–15526 (2011). https://doi.org/10.1016/J.IJHYDENE.2011.09.041

    Article  CAS  Google Scholar 

  32. X. Guo, P. Diao, D. Xu, S. Huang, Y. Yang, T. Jin, Q. Wu, M. Xiang, M. Zhang, CuO/Pd composite photocathodes for photoelectrochemical hydrogen evolution reaction. Int. J. Hydrog. Energy 39, 7686–7696 (2014)

    Article  CAS  Google Scholar 

  33. J.O. Adeyemi, D.C. Onwudiwe, PbS nanoparticles prepared using 1, 10-Phenanthroline adduct of lead(II) Bis(N-alkyl-N-phenyl dithiocarbamate) as single source precursors. Molecules (2020). https://doi.org/10.3390/MOLECULES25092097

    Article  Google Scholar 

  34. W.S. Mohamed, N.M.A. Hadia, B. Al bakheet, M. Alzaid, A.M. Abu-Dief, Impact of Cu2+ cations substitution on structural, morphological, optical and magnetic properties of Co1-xCuxFe2O4 nanoparticles synthesized by a facile hydrothermal approach. Solid State Sci. 125, 106841 (2022). https://doi.org/10.1016/J.SOLIDSTATESCIENCES.2022.106841

    Article  CAS  Google Scholar 

  35. W.S. Mohamed, A.M. Abu-Dief, Impact of rare earth europium (RE-Eu3+) ions substitution on microstructural, optical and magnetic properties of CoFe2 – xEuxO4 nanosystems. Ceram. Int. 46, 16196–16209 (2020). https://doi.org/10.1016/J.CERAMINT.2020.03.175

    Article  CAS  Google Scholar 

  36. M. Alzaid, W.S. Mohamed, M. El-Hagary, E.R. Shaaban, N.M.A. Hadia, Optical properties upon ZnS film thickness in ZnS/ITO/glass multilayer films by ellipsometric and spectrophotometric investigations for solar cell and optoelectronic applications. Opt. Mater. 118, 111228 (2021). https://doi.org/10.1016/J.OPTMAT.2021.111228

    Article  CAS  Google Scholar 

  37. N.M.A. Hadia, M. Aljudai, M. Alzaid, S.H. Mohamed, W.S. Mohamed, Synthesis and characterization of undoped and copper-doped zinc oxide nanowires for optoelectronic and solar cells applications. Appl. Phys. A: Mater. Sci. Process. 128, 1–11 (2022). https://doi.org/10.1007/S00339-021-05155-8/FIGURES/10

    Article  Google Scholar 

  38. N.M.A. Hadia, M. Shaban, S.H. Mohamed, A.F. Al-Ghamdi, M. Alzaid, A.M. Elsayed, A.H.I. Mourad, M.A. Amin, R. Boukherroub, A.A.A. Abdelazeez, M. Rabia, Highly crystalline hexagonal PbI2 sheets on polyaniline/antimony tin oxide surface as a novel and highly efficient photodetector in UV Vis and near IR regions. Polym.  Adv. Technol. (2022). https://doi.org/10.1002/PAT.5829

    Article  Google Scholar 

  39. A. Almohammedi, M. Shaban, H. Mostafa, M. Rabia, Nanoporous TiN/TiO2/Alumina membrane for photoelectrochemical hydrogen production from Sewage Water. Nanomaterials 11, 2617 (2021). https://doi.org/10.3390/NANO11102617

    Article  CAS  Google Scholar 

  40. S.M. Sayyah, M. Shaban, M. Rabia, A sensor of m-Toluidine/m-cresol polymer film for detection of lead ions by potentiometric methods. Sens. Lett. 14(5), 22–529 (2016). https://doi.org/10.1166/sl.2016.3656

    Article  Google Scholar 

  41. S.M. Sayyah, M. Shaban, M. Rabia, A Hhigh-sensitivity potentiometric mercuric ion sensor based on m-Toluidine films. IEEE Sens. J. 16, 1541–1548 (2016). https://doi.org/10.1109/JSEN.2015.2505313

    Article  CAS  Google Scholar 

  42. A. Helmy, M. Rabia, M. Shaban, A.M. Ashraf, S. Ahmed, A.M. Ahmed, Graphite/rolled graphene oxide/carbon nanotube photoelectrode for water splitting of exhaust car solution. Int. J. Energy Res. 44, 7687–7697 (2020). https://doi.org/10.1002/er.5501

    Article  CAS  Google Scholar 

  43. H.S.H. Mohamed, M. Rabia, M. Shaban, S. Taha, Controlled synthesis of CdS nanoflowers thin films for H2 electro-generation. Mater. Sci. Semicond. Process. (2020). https://doi.org/10.1016/j.mssp.2020.105307

    Article  Google Scholar 

  44. S.M. Sayyah, M. Shaban, M. Rabia, Electropolymerization of m -Toluidin on platinum electrode from aqueous acidic solution and character of the obtained polymer. Adv. Polym. Technol. 37, 126–136 (2018). https://doi.org/10.1002/adv.21649

    Article  CAS  Google Scholar 

  45. E.S.M. Sayyah, M. Shaban, M. Rabia, A sensor of m-cresol nanopolymer/Pt-electrode film for detection of lead ions by potentiometric methods. Adv. Polym. Technol. 37, 1296–1304 (2018). https://doi.org/10.1002/adv.21788

    Article  CAS  Google Scholar 

  46. M. Rabia, S.H. Mohamed, H. Zhao, M. Shaban, Y. Lei, A.M. Ahmed, TiO2/TiOxNY hollow mushrooms-like nanocomposite photoanode for hydrogen electrogeneration. J. Porous Mater. 27, 133–139 (2020). https://doi.org/10.1007/s10934-019-00792-0

    Article  CAS  Google Scholar 

  47. M. Shaban, M. Rabia, M.G. Eldakrory, R.M. Maree, A.M. Ahmed, Efficient photoselectrochemical hydrogen production utilizing of APbI3(A = Na, Cs, and Li) perovskites nanorods. Int. J. Energy Res. (2020). https://doi.org/10.1002/er.6326

    Article  Google Scholar 

  48. H. Eyring, The activated complex in chemical reactions. J. Chem. Phys. 3, 63–71 (1935). https://doi.org/10.1063/1.1749604

    Article  Google Scholar 

  49. M. Shaban, M. Benghanem, A. Almohammedi, M. Rabia, Optimization of the active layer P3HT:PCBM for organic solar cell. Coatings 11, 863 (2021). https://doi.org/10.3390/COATINGS11070863

    Article  CAS  Google Scholar 

  50. M.H. Reyes, R. Camposeco, V.R. González, Wastewater contaminated with hydrazine as scavenger agent for hydrogen production by Cu/Ti nanostructures. Catalysts 11, 74 (2021). https://doi.org/10.3390/CATAL11010074

    Article  CAS  Google Scholar 

  51. X. Huang, M. Zhang, R. Sun, G. Long, Y. Liu, W. Zhao, Enhanced hydrogen evolution from CuOx-C/TiO2 with multiple electron transport pathways. PLOS ONE 14, e0215339 (2019). https://doi.org/10.1371/JOURNAL.PONE.0215339

    Article  CAS  Google Scholar 

  52. Q.-Y. Chen, K. Zhang, J.-S. Liu, Y.-H. Wang, Hydrogen and electricity production in a light-assisted microbial photoelectrochemical cell with CaFe2O4 photocathode. J. Photonics Energy 7, 026501 (2017). https://doi.org/10.1117/1.JPE.7.026501

    Article  Google Scholar 

  53. V. Ragupathi, M.A. Raja, P. Panigrahi, Ganapathi Subramaniam,  CuO/g-C3N4 nanocomposite as promising photocatalyst for photoelectrochemical water splitting. Optik 208, 164569 (2020). https://doi.org/10.1016/J.IJLEO.2020.164569

    Article  CAS  Google Scholar 

  54. S. Masudy-Panah, R.S. Moakhar, C.S. Chua, H.R. Tan, T.I. Wong, D. Chi, G.K. Dalapati, Nanocrystal Engineering of Sputter-Grown CuO photocathode for visible-light-driven electrochemical water splitting. ACS Appl. Mater. Interfaces 8, 1206–1213 (2016). https://doi.org/10.1021/ACSAMI.5B09613

    Article  CAS  Google Scholar 

  55. J. Li, X. Jin, R. Li, Y. Zhao, X. Wang, X. Liu, H. Jiao, Copper oxide nanowires for efficient photoelectrochemical water splitting. Appl. Catal. B: Environ. 240, 1–8 (2019). https://doi.org/10.1016/J.APCATB.2018.08.070

    Article  CAS  Google Scholar 

  56. L. Jin, B. AlOtaibi, D. Benetti, S. Li, H. Zhao, Z. Mi, A. Vomiero, F. Rosei, Near-infrared colloidal quantum dots for efficient and durable photoelectrochemical solar-driven hydrogen production. Adv. Sci. 3, 1500345 (2016). https://doi.org/10.1002/ADVS.201500345

    Article  Google Scholar 

  57. EBaran Aydin, Fabrication and characterization of CuO nanostructures: applications in electrocatalytic hydrogen production. Çukurova Univ. J. Fac. Eng. Archit. 35, 127–138 (2020)

    Google Scholar 

  58. Z. Li, S. Feng, S. Liu, X. Li, L. Wang, W. Lu, A three-dimensional interconnected hierarchical FeOOH/TiO2 /ZnO nanostructural photoanode for enhancing the performance of photoelectrochemical water oxidation. Nanoscale 7, 19178–19183 (2015). https://doi.org/10.1039/C5NR06212H

    Article  CAS  Google Scholar 

  59. H. Uchiyama, K. Isobe, H. Kozuka, Preparation of porous CuO films from Cu(NO3)2 aqueous solutions containing poly(vinylpyrrolidone) and their photocathodic properties †, (2017). https://doi.org/10.1039/c6ra26590a

  60. M. Ebaid, J.-H. Kang, S.-W. Ryu, Controlled synthesis of GaN-based nanowires for photoelectrochemical water splitting applications. Semicond. Sci. Technol. 32, 013001 (2016). https://doi.org/10.1088/0268-1242/32/1/013001

    Article  CAS  Google Scholar 

  61. M. Shaban, M. Rabia, A.M.A. El-Sayed, A. Ahmed, S. Sayed, Photocatalytic properties of PbS/graphene oxide/polyaniline electrode for hydrogen generation. Sci. Rep. 7, 1–13 (2017). https://doi.org/10.1038/s41598-017-14582-8

    Article  CAS  Google Scholar 

  62. B.D. Sherman, D.L. Ashford, A.M. Lapides, M.V. Sheridan, K.-R. Wee, T.J. Meyer, Light-driven water splitting with a molecular electroassembly-based core/shell photoanode. J. Phys. Chem. Lett. 6, 3213–3217 (2015). https://doi.org/10.1021/ACS.JPCLETT.5B01370

    Article  CAS  Google Scholar 

  63. A. Naldoni, U. Guler, Z. Wang, M. Marelli, F. Malara, X. Meng, L.V. Besteiro, A.O. Govorov, A.V. Kildishev, A. Boltasseva, V.M. Shalaev, Broadband hot-electron collection for solar water splitting with plasmonic Titanium Nitride. Adv. Opt. Mater. 5, 1601031 (2017). https://doi.org/10.1002/adom.201601031

    Article  CAS  Google Scholar 

  64. G. Liu, S.K. Karuturi, H. Chen, D. Wang, J.W. Ager, A.N. Simonov, A. Tricoli, Enhancement of the photoelectrochemical water splitting by perovskite BiFeO3 via interfacial engineering. Sol. Energy 202, 198–203 (2020). https://doi.org/10.1016/j.solener.2020.03.117

    Article  CAS  Google Scholar 

  65. Z. Wang, D. Cao, L. Wen, R. Xu, M. Obergfell, Y. Mi, Z. Zhan, N. Nasori, J. Demsar, Y. Lei, Manipulation of charge transfer and transport in plasmonic-ferroelectric hybrids for photoelectrochemical applications. Nat. Commun. 7, 1–8 (2016). https://doi.org/10.1038/ncomms10348

    Article  CAS  Google Scholar 

  66. K.D. Modibane, N.J. Waleng, K.E. Ramohlola, T.C. Maponya, G.R. Monama, K. Makgopa, M.J. Hato, Poly(3-aminobenzoic acid) decorated with Cobalt Zeolitic Benzimidazolate framework for electrochemical production of clean hydrogen. Polymers 12, 1581 (2020). https://doi.org/10.3390/polym12071581

    Article  CAS  Google Scholar 

  67. E. Freeman, S. Kumar, S.R. Thomas, H. Pickering, D.J. Fermin, S. Eslava, PrFeO3 photocathodes prepared through spray pyrolysis. ChemElectroChem 7, 1365–1372 (2020). https://doi.org/10.1002/celc.201902005

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at Jouf University for funding this work through research grant no. (DSR2022-GR-0122).

Funding

The authors extend their appreciation to the Deanship of Scientific Research at Jouf University for funding this work through research grant no. (DSR2022-GR-0122).

Author information

Authors and Affiliations

Authors

Contributions

NMAH: supervision, writing—original draft, and writing—review & editing. AMA: methodology, writing—review & editing. MS: methodology, writing—review & editing. WSM: methodology, investigation, formal analysis, and editing. MA: conceptualization, methodology, and investigation. MR: conceptualization, methodology, investigation, writing, and formal analysis.

Corresponding authors

Correspondence to N. M.A. Hadia or Mohamed Rabia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadia, N.M., Ahmed, A.M., Shaban, M. et al. Flower-like shapes M-PbS (M = Li, na, or Cs)/porous CuO photocatalytic electrode for converting sewage water into H2 fuel gas. J Mater Sci: Mater Electron 34, 805 (2023). https://doi.org/10.1007/s10854-023-10154-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10154-x

Navigation