Skip to main content
Log in

Effect of LiF on microwave dielectric properties of nonstoichiometric Mg2SiO4 derived using deep eutectic solvents

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nonstoichiometric Mg2SiO4 ceramics with various Mg/Si ratios and doped with LiF were fabricated via the choline chloride-malonic acid deep eutectic solvent (DES) route. The secondary phases including MgO, MgSiO3, and SiO2 were detected in the powder with an Mg/Si ratio of excess silicon after calcined at 1200 °C. The Q × f value of the as-fabricated Mg2SiO4 ceramics was improved because LiF facilitates its densification. The ceramics have excellent properties despite of the presence of secondary phases. The optimum dielectric properties (εr = 6.5, Q × f = 118,000 GHz, τf = − 54.6 ppm/°C at 15 GHz) were obtained in the ceramics with an Mg/Si ratio of 1.6 sintered at 950 °C for 3 h. These results indicate that the Mg2SiO4 ceramic prepared by DES route, which is eco-friendly and time-saving, could be a possible candidate for low temperature co-fired ceramic (LTCC) applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. F Khan, Z Pi. mmWave mobile broadband (MMB): Unleashing the 3–300 GHz spectrum. 34th IEEE Sarnoff Symposium. IEEE, 2011: 1–6.

  2. X. Wang, L. Kong, F. Kong, F. Qiu, M. Xia, S. Arnon, G. Chen, Millimeter wave communication: a comprehensive survey. IEEE Commun. Surv. Tutorials 20(3), 1616–1653 (2018)

    Article  Google Scholar 

  3. K. Wakino, T. Nishikawa, H. Tamura, Dielectric resonator materials and their applications for mobile communication systems. Br. Ceramic Trans. J. 89(2), 39–43 (1990)

    CAS  Google Scholar 

  4. K. Wakino, Recent development of dielectric resonator materials and filters in Japan. Ferroelectrics 91, 69–86 (1989)

    Article  CAS  Google Scholar 

  5. D. Kajfezz, P. Guillon, Dielectric resonators (Noble Publishing Corporation, Tucker, 1998)

    Google Scholar 

  6. F. Kamutzki, S. Schneider, J. Barowski, A. Gurlo, D.A. Hanaor, Silicate dielectric ceramics for millimetre wave applications. J. Eur. Ceram. Soc. 41(7), 3879–3894 (2021)

    Article  CAS  Google Scholar 

  7. M. Ando, K. Himura, T. Tsunooka, I. Kagomiya, H. Ohsato, Synthesis of high-quality forsterite. Jpn. J. Appl. Phys. 46(10B), 7112–7116 (2007)

    Article  CAS  Google Scholar 

  8. S. Mikhail, P. King, High-temperature thermal analysis study of the reaction between magnesium oxide and silica. J. Therm. Anal. Calorim. 40(1), 79–84 (1993)

    Article  CAS  Google Scholar 

  9. Y. Lai, X. Tang, H. Zhang, X. Liang, X. Huang, Y. Li, H. Su, Correlation between structure and microwave dielectric properties of low-temperature-fired Mg2SiO4 ceramics. Mater. Res. Bull. 99, 496–502 (2018)

    Article  CAS  Google Scholar 

  10. Z. Wang, F. Pan, L. Liu, Q. Du, R. Tang, J. Ai, Y. Chen, Enhanced microwave dielectric properties and sintering behaviors of Mg2SiO4-Li2TiO3-LiF ceramics by adding CaTiO3 for LTCC and GPS antenna applications. Curr. Comput.-Aided Drug Des. 12(4), 512 (2022)

    Google Scholar 

  11. C. Zhang, Y. Chen, X. Li, H. Ren, G. Wang, X. Dong, Effect of LiF addition on sintering behavior and dielectric breakdown mechanism of MgO-based microwave dielectric ceramics. J. Materiom. 7(3), 478–487 (2021)

    Article  Google Scholar 

  12. M.E. Song, J.S. Kim, M.R. Joung, S. Nahm, Y.S. Kim, J.H. Paik, B.H. Choi, Synthesis and microwave dielectric properties of MgSiO3 ceramics. J. Am. Ceram. Soc. 91(8), 2747–2750 (2008)

    Article  CAS  Google Scholar 

  13. L Li., Y Fang, Q Xiao, Y J Wu, N Wang, X M Chen. Microwave dielectric properties of fused silica prepared by different approaches. International Journal of Applied Ceramic Technology, 2014, 11(1): 193–199.

  14. E.L. Smith, A.P. Abbott, K.S. Ryder, Deep eutectic solvents (DESs) and their applications. Chem. Rev. 114(21), 11060–11082 (2014)

    Article  CAS  Google Scholar 

  15. X. Ge, C. Gu, X. Wang, J. Tu, Deep eutectic solvents (DESs)-derived advanced functional materials for energy and environmental applications: challenges, opportunities, and future vision. J. Mater. Chem. A 5(18), 8209–8229 (2017)

    Article  CAS  Google Scholar 

  16. R. Boston, P.Y. Foeller, D.C. Sinclair, I.M. Reaney, Synthesis of barium titanate using deep eutectic solvents. Inorg. Chem. 56(1), 542–547 (2017)

    Article  CAS  Google Scholar 

  17. Q.F. Wang, Y.J. Gu, Q. Li, J.L. Huang, M. Chen, S. Gao, B.H. Kim, Nano-crystalline powders and microwave dielectric properties of Zr08Sn02TiO4 ceramics derived using deep eutectic solvents. J. Mater. Sci. 32(18), 23317–23324 (2021)

    CAS  Google Scholar 

  18. A. Douy, Aqueous syntheses of forsterite (Mg2SiO4) and enstatite (MgSiO3). J. Sol-Gel. Sci. Technol. 24(3), 221–228 (2002)

    Article  CAS  Google Scholar 

  19. B.H. Toby, R.B. Von Dreele, GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 46(2), 544–549 (2013)

    Article  CAS  Google Scholar 

  20. K.X. Song, X.M. Chen, X.C. Fan, Effects of Mg/Si ratio on microwave dielectric characteristics of forsterite ceramics. J. Am. Ceram. Soc. 90(6), 1808–1811 (2007)

    Article  CAS  Google Scholar 

  21. I.O. Alade, Y. Zhang, X. Xu, Modeling and prediction of lattice parameters of binary spinel compounds (AM 2 X 4) using support vector regression with Bayesian optimization. New J. Chem. 45(34), 15255–15266 (2021)

    Article  CAS  Google Scholar 

  22. J.J. Bian, Y.F. Dong, New high Q microwave dielectric ceramics with rock salt structures:(1–x) Li2TiO3 + xMgO system (0≤ x≤ 05). J. Eur. Ceramic Soc. 30(2), 325–330 (2010)

    Article  CAS  Google Scholar 

  23. A. Kan, T. Moriyama, S. Takahashi, H. Ogawa, Low-temperature sintering and microwave dielectric properties of MgO ceramic with LiF addition. Jpn. J. Appl. Phys. 50(92), 1 (2011)

    Google Scholar 

  24. Z. Liang, J. Li, J. Wu, Y. Yang, B. Lu, Y. Zhang, H. Zhang, Enhanced microstructure and dielectric properties of low-temperature sintered MgO-x wt% LiF ceramics for high-frequency applications. Ceram. Int. 48(2), 2704–2709 (2022)

    Article  CAS  Google Scholar 

  25. S.J. Penn, N.M.N. Alford, A. Templeton, X. Wang, M. Xu, M. Reece, K. Schrapel, Effect of porosity and grain size on the microwave dielectric properties of sintered alumina. J. Am. Ceram. Soc. 80(7), 1885–1888 (1997)

    Article  CAS  Google Scholar 

  26. A. Kan, H. Ogawa, T. Moriyama, Crystal structure and microwave dielectric properties of low temperature sintered MgO ceramic with LiF addition. J. Mater. Res. 27(6), 915–921 (2012)

    Article  CAS  Google Scholar 

  27. S.D. Ramarao, V.R.K. Murthy, Crystal structure refinement and microwave dielectric properties of new low dielectric loss AZrNb2O8 (A: Mn, Zn, Mg, and Co) ceramics. Scr. Mater. 69(3), 274–277 (2013)

    Article  CAS  Google Scholar 

  28. X. Du, H. Su, H. Zhang, Y. Jing, Z. Zhou, G. Gan, X. Tang, Effects of Li-ion substitution on the microwave dielectric properties of low-temperature sintered ceramics with nominal composition Li2xMg2− xSiO4. Ceram. Int. 44(2), 2300–2303 (2018)

    Article  CAS  Google Scholar 

  29. R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73(1), 348–366 (1993)

    Article  CAS  Google Scholar 

  30. S.O. Nelson, Factors affecting the dielectric properties of grain. Trans. ASAE 25(4), 1045–1049 (1982)

    Article  Google Scholar 

  31. W.D. Kingery, H.K. Bowen, D.R. Uhlmann, Introduction to ceramics (Wiley, New York, 1976)

    Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

HZ, Material preparation, Date curation and analysis, Software, Writing—original draft, Investigation; QL, Methodology, Writing- review and editing, Supervision, Resources; YG, Methodology, Writing- review and editing, Supervision; LL, Writing- review and editing; JH, Writing- review and editing; BK, Writing- review and editing.

Corresponding authors

Correspondence to Qian Li or Yong-jun Gu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This manuscript does not contain any stuff which needed ethical approval and the research does not involve human participants and/or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Hj., Li, Q., Gu, Yj. et al. Effect of LiF on microwave dielectric properties of nonstoichiometric Mg2SiO4 derived using deep eutectic solvents. J Mater Sci: Mater Electron 34, 844 (2023). https://doi.org/10.1007/s10854-023-10151-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10151-0

Navigation