Skip to main content
Log in

Pompon-like Bi2WO6 hierarchical nanostructures: preparation and their application in photodegradation of norfloxacin and difloxacin hydrochloride

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Pompon-like Bi2WO6 hierarchical nanostructures (BWO HNs) were obtained through a simple hydrothermal synthesis method. XRD, SEM, TEM, UV–vis spectroscopy, and N2 adsorption–desorption have been used to measure their microstructure and physicochemical properties. The photocatalytic properties of the products have been tested by photodegradation of norfloxacin (NOR) and difloxacin hydrochloride (DFL). The pompon-like BWO HNs samples exhibited excellent photoactivity in antibiotic removal, and as much as 97.67% of NOR and 93.87% of DFL could be efficiently degraded in 120 min. In addition, the photocatalytic activity of the BWO HNs samples showed slight changes after five consecutive cycles, displaying good stability and good potential application value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available in www.springernature.com.

References

  1. U. Hubicka, P. Zmudzki, B. Zuromska-Witek, P. Zajdel, M. Pawlowski, J. Krzek, Talanta 109, 91 (2013)

    Article  CAS  Google Scholar 

  2. X.L. Guo, D. Li, J.F. Wan, X. Yu, Electrochim. Acta 180, 957 (2015)

    Article  CAS  Google Scholar 

  3. C. Cai, H. Liu, B. Wang, J. Hazard. Mater. 331, 265 (2017)

    Article  CAS  Google Scholar 

  4. G. Li, H. Yang, T. An, Y. Lu, Ecotox. Environ. Safe. 158, 154 (2018)

    Article  CAS  Google Scholar 

  5. J. Liu, Q. Sun, C. Zhang, H. Li, W. Song, N. Zhang, X. Jia, Desalin. Water Treat. 57(24), 1 (2016)

    Article  Google Scholar 

  6. P. Liu, H. Zhang, Y. Feng, F. Yang, Chem. Eng. J. 240(6), 211 (2014)

    Article  CAS  Google Scholar 

  7. Y. Gao, Y. Li, L. Zhang, J. Colloid Interf. Sci. 368(1), 540 (2012)

    Article  CAS  Google Scholar 

  8. T. Wang, P. Xu, W. Ben, P. Hou, Z. Qiang, J. Environ. Sci. 52(2), 111 (2017)

    Article  CAS  Google Scholar 

  9. C.B. Özkal, Z. Frontistis, M. Antonopoulou, I. Konstantinou, D. Mantzavinos, S. Meric, J. Environ. Sci. 10, 116 (2017)

    Google Scholar 

  10. T. Paul, M.L. Machesky, T.J. Strathmann, Environ. Sci. Technol. 46(21), 11896 (2012)

    Article  CAS  Google Scholar 

  11. A. Kaur, S. Sharma, S. Sood, A. Umar, S. Bhinder, S. Kansal, Nanosci. Nanotechnol. Lett. 8(8), 660 (2016)

    Article  Google Scholar 

  12. A. Kudo, S. Hijii, Chem. Lett. 10, 1103 (1999)

    Article  Google Scholar 

  13. J. Tang, Z. Zou, J. Ye, Catal. Lett. 92, 53 (2004)

    Article  CAS  Google Scholar 

  14. A. Kaur, S.K. Kansal, Chem. Eng. J. 302, 194 (2016)

    Article  CAS  Google Scholar 

  15. B. Wang, H. Yang, T. Xian, L.J. Di, R.S. Li, X.X. Wang, J. Nanomater. 16, 1 (2015)

    Google Scholar 

  16. R. He, S. Cao, P. Zhou, J. Yu, Chin. J. Catal. 35, 989 (2014)

    Article  CAS  Google Scholar 

  17. X. Li, J. Yu, M. Jaroniec, Chem. Soc. Rev. 45, 2603 (2016)

    Article  CAS  Google Scholar 

  18. S.G. Kumar, K.S.R.K. Rao, Appl. Surf. Sci. 355, 939 (2015)

    Article  Google Scholar 

  19. M. Shang, W. Wang, H. Xu, Cryst. Growth. Des. 9, 91 (2009)

    Google Scholar 

  20. Y. Liu, H. Lv, J. Hu, Z. Li, Mater. Lett. 139, 401 (2015)

    Article  CAS  Google Scholar 

  21. P. Dumrongrojthanath, T. Thongtem, A. Phuruangrat, S. Thongtem, Superlattice. Microst. 54, 71 (2013)

    Article  CAS  Google Scholar 

  22. M. Chen, Y. Huang, S.C. Lee, Chin. J. Catal. 38, 348 (2017)

    Article  CAS  Google Scholar 

  23. Z. Yang, L. Huang, Y. Xie, Z. Lin, Y. Fan, D. Liu, L. Chen, Z. Zhang, X. Wang, Appl. Surf. Sci. 403, 326 (2017)

    Article  CAS  Google Scholar 

  24. Y. Zhuo, J. Huang, L. Cao, H. Ouvang, J. Wu, Mater. Lett. 90, 107 (2013)

    Article  CAS  Google Scholar 

  25. J. Wang, J. Li, N. Zhao, J. Sha, S. Hao, E. Liu, C. Shi, C. He, D. Wang, Appl. Surf. Sci. 324, 698 (2015)

    Article  CAS  Google Scholar 

  26. J. Wu, F. Duan, Y. Zheng, Y. Xie, J. Phys. Chem. C 111, 12866 (2017)

    Article  Google Scholar 

  27. Q. Chen, Y. Mao, N. Bing, L.P. Zhu, Chin. Chem. Lett. 30(3), 783 (2019)

    Article  CAS  Google Scholar 

  28. T. Wang, C. Feng, J. Liu, D. Wang, G. Xue, Chem. Eng. J. 414, 128827 (2021)

    Article  CAS  Google Scholar 

  29. M.I. Osotsi, Y. Xiong, S. Fu, W. Zhang, Z. Di, Nanoscale 14, 8130 (2022)

    Article  CAS  Google Scholar 

  30. M. Karbasi, S.J. Hashemifar, F. Karimzadeh, S. Giannakis, C. Pulgarin, K. Raeissi, A. Sienkiewicz, Chem. Eng. J. 427(3), 131768 (2022)

    Article  CAS  Google Scholar 

  31. D. Ma, S. Huang, W. Chen, S. Hu, F. Shi, K. Fan, J. Phys. Chem. C 113, 4369 (2009)

    Article  CAS  Google Scholar 

  32. Y. Mao, J. Wei, Y. Zou, L. Zhu, CrystEngComm 22, 3115 (2020)

    Article  CAS  Google Scholar 

  33. M.A. Butler, J. Appl. Phys. 48, 1914 (1977)

    Article  CAS  Google Scholar 

  34. D.V. Bavykin, V.N. Parmon, A.A. Lapkin, F.C. Walsh, J. Mater. Chem. 14, 3370 (2004)

    Article  CAS  Google Scholar 

  35. J. Yu, H. Yu, B. Cheng, C. Traplis, J. Mol. Catal. A 249, 135 (2006)

    Article  CAS  Google Scholar 

  36. L.P. Zhu, N.C. Bing, L.L. Wang, H.Y. Jin, G.H. Liao, L.J. Wang, Dal. Trans. 41, 2959 (2012)

    Article  CAS  Google Scholar 

  37. L.P. Zhu, G.H. Liao, N.C. Bing, L.L. Wang, Y. Yang, H.Y. Xie, CrystEngComm 12, 3791 (2010)

    Article  CAS  Google Scholar 

  38. Y. Zhao, Y. Wang, E. Liu, J. Fan, X. Hu, Appl. Surf. Sci. 436, 854 (2018)

    Article  CAS  Google Scholar 

  39. L. Zhang, W. Wang, L. Zhou, H. Xu, Small 3, 1618 (2007)

    Article  CAS  Google Scholar 

  40. Y. Li, J. Liu, X. Huang, Nanoscale Res. Lett. 3, 365 (2008)

    Article  CAS  Google Scholar 

  41. J. Wu, F. Duan, Y. Zheng, Y. Xie, J. Phys. Chem. C 111, 12866 (2007)

    Article  CAS  Google Scholar 

  42. X. Chu, G. Shan, C. Chang, Y. Fu, L. Yue, L. Zhu, Front. Environ. Sci. Eng. 10, 211 (2016)

    Article  CAS  Google Scholar 

  43. J. Tang, Z. Zou, J. Ye, Chem. Mater. 16, 1644 (2004)

    Article  CAS  Google Scholar 

  44. J.G. Yu, J.F. Xiong, B. Cheng, S.W. Liu, Appl. Catal. B 60, 211 (2005)

    Article  CAS  Google Scholar 

  45. L.Z. Zhang, J.C. Yu, Chem. Commun. (2003). https://doi.org/10.1039/b306013f

    Article  Google Scholar 

  46. X. Wang, J.C. Yu, C. Ho, Y. Hou, X. Fu, Langmuir 21, 2552 (2005)

    Article  CAS  Google Scholar 

  47. Z.Y. Liu, D.D. Sun, P. Guo, J.O. Leckie, Chem. Eur. J. 13, 1851 (2007)

    Article  CAS  Google Scholar 

  48. L. Zheng, S. Han, H. Liu, P. Yu, X. Fang, Small 12(11), 1527 (2016)

    Article  CAS  Google Scholar 

  49. J. Wang, T. Feng, J. Chen, J.-H. He, X. Fang, Research (2022). https://doi.org/10.34133/2022/9837012

    Article  Google Scholar 

  50. R. Xu, Y. Xu, Y. Huang, Y.M. Shi, B. Zhang, CrystEngComm 17, 27 (2015)

    Article  CAS  Google Scholar 

  51. S. Liu, L. Zheng, P. Yu, S. Han, X. Fang, Adv. Funct. Mater. 26, 3331 (2016)

    Article  CAS  Google Scholar 

Download references

Funding

This research was jointly sponsored by the Shanghai Municipal Natural Science Foundation (No. 18ZR1415700), Postgraduate fund (SSPU, Nos. EGD17YJ0005), Project of Shanghai Municipal Science and Technology Commission (22DZ2291100), and the key subject of SSPU (No. 4: Material Science and Engineering, XXKZD1601).

Author information

Authors and Affiliations

Authors

Contributions

All the authors have given their contributions to the manuscript. Yuxin Wu performed the experiment and writing original draft; Weihao Wu contributed to analysis, data processing, and mechanism; Qiang Chen contributed to investigation, conceptualization, and methodology; Yuqin Mao contributed to discussions and validation; Luping Zhu contributed to supervision, review and editing.

Corresponding author

Correspondence to LuPing Zhu.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

The authors have found all the moral standards and will intend to follow them in future.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Wu, W., Chen, Q. et al. Pompon-like Bi2WO6 hierarchical nanostructures: preparation and their application in photodegradation of norfloxacin and difloxacin hydrochloride. J Mater Sci: Mater Electron 34, 767 (2023). https://doi.org/10.1007/s10854-023-10144-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10144-z

Navigation