Skip to main content
Log in

Improved Curie temperature and piezoelectric activity of K/Ce co-doped Bi4Ti3O12–BaBi4Ti4O15 intergrowth structure ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

K/Ce co-doped Bi4Ti3O12–Ba1−x(K1/2Ce1/2)xBi4Ti4O15 (BBIT-xKC, 0 ≤ x ≤ 0.3) intergrowth bismuth layered piezoelectric ceramics were prepared by traditional solid-state reaction. The effects of K/Ce substitution on structure, high temperature conductivity, and piezoelectric properties of BBIT were systematically investigated. The XRD results suggest that all the samples exhibited 3–4 layers of intergrowth bismuth layered orthogonal structure, the Raman mode variation revealed the K/Ce ions enter A-site. The Curie temperature (Tc) of BBIT ceramics has been raised. The decrease of dielectric loss and increase of impedance activation energy is related to the decrease of oxygen vacancy (OV) concentration, which is demonstrated by XPS measurements. The BBIT-0.15KC ceramic sample has outstanding electrical properties, the remanent polarization 2Pr is 30.1 µC/cm2, Tc is 535 °C, and the d33 value is 22.3 pC/N. The d33 value remains at its original 91.9% after depolarization at 400 °C, showing good thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. X. Gao, J. Yang, J. Wu et al., Piezoelectric actuators and motors: materials, designs, and applications. Adv. Mater. Technol. 5(1), 1900716 (2020)

    Article  CAS  Google Scholar 

  2. D. Wang, A. Wang, W. Wang, L. Li et al., Current development and application of Piezoelectric Ceramic materials with high Curie temperatures. J. Ceram. 42(3), 376–388 (2021)

    CAS  Google Scholar 

  3. J. Wu, X. Gao, J. Chen et al., Review of high temperature piezoelectric materials, devices, and applications. Acta Phys. Sin. 67(20), 207701 (2018)

    Article  Google Scholar 

  4. Y. Meng, G. Chen, M. Huang, Piezoelectric materials properties, advancements, and design strategies for high-temperature applications. Nanomaterials 12(7), 1171 (2022)

    Article  CAS  Google Scholar 

  5. E. Pakizeh, Optical response and structural properties of Fe-doped pb(Zr0.52Ti0.48)O3 nanopowders. J. Mater. Sci.: Mater. Electron 31(6), 4872–4881 (2020)

    CAS  Google Scholar 

  6. D.V. Karpinsky, M.V. Silibin, S.V. Trukhanov et al., Peculiarities of the Crystal structure evolution of BiFeO3-BaTiO3 Ceramics across Structural Phase Transitions. Nanomaterials 10, 801 (2020)

    Article  CAS  Google Scholar 

  7. H. Li, Y. Zhang, J. Zhou et al., Phase structure and electrical properties of xPZN-(1-x)PZT piezoceramics near the tetragonal/rhombohedral phase boundary. Ceram. Int. 41(3), 4822–4828 (2015)

    Article  CAS  Google Scholar 

  8. C. Long, W. Ren, K. Zheng et al., Ultrahigh-temperature piezoelectric polycrystalline ceramics: dramatically enhanced ferroelectricity, piezoelectricity and electrical resistivity in Ca1-3xBi2+3xNb2-xMnxO9. Mater. Res. Lett. 8(4), 165–172 (2020)

    Article  CAS  Google Scholar 

  9. R.E. Newnham, R.W. Wolfe, J.F. Dorrian, Structural basis of ferroelectricity in the bismuth titanate family. Mater. Res. Bull. 6(10), 1029–1039 (1971)

    Article  CAS  Google Scholar 

  10. K.H. Xue, C.A. Paz de Araujo, J. Celinska, A comparative study on Bi4Ti3O12 and Bi3.25La0.75Ti3O12 ferroelectric thin films derived by metal organic decomposition. J. Appl. Phys. 107(10), 104123 (2010)

    Article  Google Scholar 

  11. X. Xing, F. Cao, Z. Peng et al., Electrical properties and sintering characteristics of zirconium doped CaBi2Nb2O9 ceramics. Ceram. Int. 44(14), 17326–17332 (2018)

    Article  CAS  Google Scholar 

  12. J. Tellier, P. Boullay, M. Manier et al., A comparative study of the Aurivillius phase ferroelectrics CaBi4Ti4O15 and BaBi4Ti4O15. J. Solid State Chem. 177(6), 1829–1837 (2004)

    Article  CAS  Google Scholar 

  13. F. Zhang, W. Shi, S. Guan et al., Enhanced electrical properties and thermal stability of W/Cr co-doped BIT-based high-temperature piezoelectric ceramics. J. Alloys Compd. 907, 164492 (2022)

    Article  CAS  Google Scholar 

  14. R. Maalal, M. Manier, J.P. Mercuric, Dielectric properties of the mixed aurivillius phases MIIBi8Ti7O27 (MII = ca, Sr, Ba and Pb). J. Eur. Ceram. Soc. 15(11), 1135–1140 (1995)

    Article  CAS  Google Scholar 

  15. H. Yan, Z. Zhang, W. Zhu et al., The effect of (Li, Ce) and (K, Ce) doping in Aurivillius phase material CaBi4Ti4O15. Mater. Res. Bull. 39(9), 1237–1246 (2004)

    Article  CAS  Google Scholar 

  16. J. Xu, X. Jiang, C. Chen et al., K/Ce effect of K/Ce ions co-doping on structure and electrical properties of Na0.5Bi2.5Ta2O9 ceramics. J. Chin. ceramic Soc. 49(04), 639–647 (2021)

    CAS  Google Scholar 

  17. R.E. El-Shatera, H. El Shimy, S.A. Saafana et al., Synthesis, characterization, and magnetic properties of Mn nanoferrites. J. Alloys Compd. 928, 166954 (2022)

    Article  Google Scholar 

  18. S.Z. Hao, D. Zhou, F. Hussain et al., Structure, spectral analysis and microwave dielectric properties of novel x(NaBi)0.5MoO4-(1-x)Bi2/3MoO4 (x = 0.2 ~ 0.8) ceramics with low sintering temperatures. J. Eur. Ceram. Soc. 40(10), 3569–3576 (2020)

    Article  CAS  Google Scholar 

  19. S.Z. Hao, D. Zhou, L.X. Pang et al., Ultra-low temperature co-fired ceramics with adjustable microwave dielectric properties in the Na2O-Bi2O3-MoO3 ternary system: a comprehensive study. J. Mater. Chem. C 10, 2008–2016 (2022)

    Article  CAS  Google Scholar 

  20. Y. Jiang, X. Jiang, C. Chen et al., Effect of tantalum substitution on the structural and electrical properties of BaBi8Ti7O27 intergrowth ceramics. Ceram. Int. 46(6), 8122–8129 (2020)

    Article  CAS  Google Scholar 

  21. B. Wylie-van Eerd, D. Damjanovic, N. Klein et al., Structural complexity of (Na0.5Bi0.5)TiO3-BaTiO3 as revealed by Raman spectroscopy. Phys. Rev. B 82(10), 10411 (2010)

    Article  Google Scholar 

  22. M. Osada, M. Tada, M. Kakihana et al., Cation distribution and structural instability in Bi4-xLaxTi3O12. Jpn. J. Appl. Phys. 40(9S), 5572 (2001)

    Article  CAS  Google Scholar 

  23. J. Zhu, X. Chen, Z. Zhang et al., Raman and X-ray photoelectron scattering study of lanthanum-doped strontium bismuth titanate. Acta Mater. 53(11), 3155–3162 (2005)

    Article  CAS  Google Scholar 

  24. P.S. Dobal, R.S. Katiyar, Studies on ferroelectric perovskites and bi-layered compounds using micro‐Raman spectroscopy. J. Raman Spectrosc. 33(6), 405–423 (2002)

    Article  CAS  Google Scholar 

  25. Y. Jiang, X. Jiang, C. Chen et al., Structural and electrical properties of La3+-doped Na0.5Bi4.5Ti4O15-Bi4Ti3O12 inter-growth high temperature piezoceramics. Ceram. Int. 43(8), 6446–6452 (2017)

    Article  CAS  Google Scholar 

  26. M.S.P. Francisco, V.R. Mastelaro, P.A.P. Nascente et al., Activity and characterization by XPS, HR-TEM, Raman spectroscopy, and BET surface area of CuO/CeO2-TiO2 catalysts. J. Phys. Chem. B 105(43), 10515–10522 (2001)

    Article  CAS  Google Scholar 

  27. Y.C. Xu, C. Song, X.Y. Ding et al., Tailoring lattices of Bi2WO6 crystals via ce doping to improve the shielding properties against low-energy gamma rays. J. Phys. Chem. Solids 127, 76–80 (2019)

    Article  CAS  Google Scholar 

  28. L. Hu, H. Hu, W. Lu et al., Novel composite BiFeO3/ZrO2 and its high photocatalytic performance under white LED visible-light irradiation. Mater. Res. Bull. 120, 110605 (2019)

    Article  CAS  Google Scholar 

  29. B. Luo, Role of the defect in determining the properties of PbTi0.9Ni0.1O3 thin films. J. Appl. Phys. 122(19), 195104 (2017)

    Article  Google Scholar 

  30. B. Luo, H. Dong, D. Wang et al., Large recoverable energy density with excellent thermal stability in Mn-modified NaNbO3‐CaZrO3 lead‐free thin films. J. Am. Ceram. Soc. 101(8), 3460–3467 (2018)

    Article  CAS  Google Scholar 

  31. C.L. Diao, J.B. Xu, H.W. Zheng et al., Dielectric and piezoelectric properties of cerium modified BaBi4Ti4O15 ceramics. Ceram. Int. 39(6), 6991–6995 (2013)

    Article  CAS  Google Scholar 

  32. Z.H. Wu, Z.Y. Shen, F.H. Song et al., Effect of A-site Ce doping on electrical properties of CaBi4Ti4O15 bismuth layered high-curie-temperature piezoelectric ceramics. J. Ceram. 43(02), 296–301 (2022)

    Google Scholar 

  33. Y. Wu, S.J. Limmer, T.P. Chou et al., Influence of tungsten doping on dielectric properties of strontium bismuth niobate ferroelectric ceramics. J. Mater. Sci. Lett. 21(12), 947–949 (2002)

    Article  CAS  Google Scholar 

  34. D.Y. Suárez, I.M. Reaney, W.E. Lee, Relation between tolerance factor and Tc in Aurivillius compounds. J. Mater. Res 16(11), 3139–3149 (2001)

    Article  Google Scholar 

  35. M. Zhang, Z. Chen, Y. Yue et al., Terahertz reading of ferroelectric domain wall dielectric switching. ACS Appl. Mater. Interfaces 13(10), 12622–12628 (2021)

    Article  CAS  Google Scholar 

  36. Z. Peng, Q. Chen, Y. Chen et al., Microstructure and electrical properties in W/Nb co-doped Aurivillius phase Bi4Ti3O12 piezoelectric ceramics. Mater. Res. Bull. 59, 125–130 (2014)

    Article  CAS  Google Scholar 

  37. L. Sun, C. Feng, L. Chen et al., Dielectric and piezoelectric properties of SrBi2-xSmxNb2O9 (x = 0, 0.05, 0.1, 0.2, 0.3, and 0.4) Ceramics. J. Am. Ceram. Soc. 90(12), 3875–3881 (2007)

    CAS  Google Scholar 

  38. P. Gupta, R. Padhee, P.K. Mahapatra et al., Structural and electrical properties of Bi3TiVO9 ferroelectric ceramics. J. Alloys Compd. 731, 1171–1180 (2018)

    Article  CAS  Google Scholar 

  39. H. Liu, Y. Sun, Defect chemistry for Mn-doped and Nb-doped BiFeO3-based ceramics. J. Phys. Chem. Solids 170, 110951 (2022)

    Article  CAS  Google Scholar 

  40. Y. Chen, Z. Pen, Q. Wang et al., Crystalline structure, ferroelectric properties, and electrical conduction characteristics of W/Cr co-doped Bi4Ti3O12 ceramics. J. Alloys Compd. 612, 120–125 (2014)

    Article  CAS  Google Scholar 

  41. C. Long, H. Fan, Y. Wu et al., Hole conduction and electro-mechanical properties of Na0.5Bi2.5Ta2O9-based piezoelectric ceramics with the Li+/Ce3+/Sc3+ modification. J. Appl. Phys. 116(7), 074111 (2014)

    Article  Google Scholar 

  42. X. Li, Z. Chen, L. Sheng et al., Remarkable piezoelectric activity and high electrical resistivity in Cu/Nb co-doped Bi4Ti3O12 high temperature piezoelectric ceramics. J. Eur. Ceram. Soc. 39(6), 2050–2057 (2019)

    Article  CAS  Google Scholar 

  43. Q. Tan, D. Viehland, Influence of thermal and electrical histories on domain structure and polarization switching in potassium-modified lead zirconate titanate ceramics. J. Am. Ceram. Soc. 81(2), 328–336 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Grant Nos. 51862016, 52062018), and the Natural Science Foundation of Jiangxi Province (20212ACB214007, 20212BAB201019).

Author information

Authors and Affiliations

Authors

Contributions

CC: conceptualization, methodology, writing—original draft. XJ: project administration. CC: resources, data curation. XH: visualization, writing—review, and editing. XN: data curation. FY: conceptualization, validation. CZ: experiment.

Corresponding author

Correspondence to Xiangping Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Jiang, X., Chen, C. et al. Improved Curie temperature and piezoelectric activity of K/Ce co-doped Bi4Ti3O12–BaBi4Ti4O15 intergrowth structure ceramics. J Mater Sci: Mater Electron 34, 763 (2023). https://doi.org/10.1007/s10854-023-10136-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10136-z

Navigation