Skip to main content

Advertisement

Log in

Large tunability properties of (Ba0.91Ca0.09)(Zr0.2Ti0.8)O3-x mol% CuO ceramics under bias of domain switching effect

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, the dielectric and tunable properties of (Ba0.91Ca0.09)(Zr0.2Ti0.8)O3-x mol% CuO ceramics were investigated. The micromorphology and elements distribution of prepared ceramics were recorded to understand the dielectric and tunable properties. The grain size presents non-monotonic dependence on the content of CuO and the maximum grain size was found at x = 2. Meanwhile, the content of CuO has an important influence on the loss tangent of prepared ceramics. According to the measured complex impedance, (Ba0.91Ca0.09)(Zr0.2Ti0.8)O3-2 mol% CuO ceramic possessed a comparatively higher activation energy of grain boundary, making it have a lower loss tangent. The larger grains are in favor to the movement of domain due to the reductions in grain boundaries, which supports the enhancement of tunability. Thus, BCZTC2 ceramic possesses a maximum figure of merit (123.85) with a higher tunability (65%) at a lower electric filed (~ 7.5 kV/cm). Those results indicated that (Ba0.91Ca0.09)(Zr0.2Ti0.8)O3-2 mol% CuO ceramic can be applied into ferroelectric varactors with a low working electric filed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The authors do not have permission to share data.

References

  1. P.M. Vilarinho, Z. Fu, A.I. Kingon, A. Tkach, Low loss tunable dielectric BaNd2Ti5O14–(Ba0.5Sr0.5)TiO3 composite thick films. Scripta Mater 155, 160–163 (2018)

    Article  CAS  Google Scholar 

  2. I. Bakaimi, X. He, S. Guerin, N.Z.I. Hashim, Q. Luo, I.M. Reaney, S. Gao, B.E. Hayden, C.H.K. de Groot, Combinatorial synthesis and screening of (Ba,Sr)(Ti,Mn)O3 thin films for optimization of tunable co-planar waveguides. J. Mater. Chem. C 6(23), 6222–6228 (2018)

    Article  CAS  Google Scholar 

  3. K.K. Karnati, M.E. Trampler, X. Gong, A monolithically BST-integrated Kα-band beamsteerable reflectarray antenna. IEEE Trans. Antennas Propag. 65(1), 159–166 (2017)

    Article  Google Scholar 

  4. A. Victor, J. Nath, D. Ghosh, B. Boyette, J.P. Maria, M.B. Steer, A.I. Kingon, G.T. Stauf, Noise characteristics of an oscillator with a barium strontium titanate (BST) varactor, IEE Proceedings - Microwaves, Antennas and Propagation 153(1) (2006)

  5. G. Subramanyam, M.W. Cole, N.X. Sun, T.S. Kalkur, N.M. Sbrockey, G.S. Tompa, X. Guo, C. Chen, S.P. Alpay, G.A. Rossetti, K. Dayal, L.Q. Chen, D.G. Schlom, Challenges and opportunities for multi-functional oxide thin films for voltage tunable radio frequency/microwave components. J. Appl. Phys. 114(19), 191301 (2013)

    Article  Google Scholar 

  6. X. Lu, Y. Tong, L. Zhang, B. Ma, Z.Y. Cheng, High dielectric tunability in composites prepared using SiO2 coated Ba0.5Sr0.5TiO3 nanoparticles. Ceram. Int. 44(8), 9875–9879 (2018)

    Article  CAS  Google Scholar 

  7. V. Karol, C. Prakash, A. Sharma, Impact of magnesium content on various properties of Ba0.95-xSr0.05MgxTiO3 ceramic system synthesized by solid state reaction route. Mater. Chem. Phys. 271, 124905 (2021)

    Article  CAS  Google Scholar 

  8. W. Liu, Y. Zhao, Y. Jin, F. Kong, J. Gao, S. Li, Enhanced dielectric tunability and reduced dielectric loss in various donor-acceptor co-doped Ba0.675Sr0.325TiO3 ceramics. Mater. Chem. Phys. 291, 126702 (2022)

    Article  CAS  Google Scholar 

  9. W. Liu, Y. Zhao, Y. Jin, F. Kong, J. Gao, S. Li, Enhanced dielectric tunability and reduced dielectric loss in the La/Fe co-doped Ba0.65Sr0.35TiO3 ceramics. J. Alloys Compd. 901, 163642 (2022)

    Article  CAS  Google Scholar 

  10. P. Ren, Q. Wang, S. Li, G. Zhao, Energy storage density and tunable dielectric properties of BaTi0.85Sn0.15O3/MgO composite ceramics prepared by SPS. J. Eur. Ceram. Soc. 37(4), 1501–1507 (2017)

    Article  CAS  Google Scholar 

  11. Y. He, Y. Peng, X. Ma, Y. Xu, Dielectric tunable properties of Ba0.5Sr0.5TiO3–Mg2TiO4–MgO composite ceramics prepared by spark plasma sintering. Materialia 5, 100217 (2019)

    Article  CAS  Google Scholar 

  12. A.E.-r Mahmoud, S. Moeen, M.K. Gerges, Enhancing the tunability properties of pure (Ba,Sr)TiO3 lead-free ferroelectric by polar nanoregion contributions. J. Mater. Sci.: Mater. Electron. 32(10), 13248–13260 (2021)

    CAS  Google Scholar 

  13. T. Teranishi, K. Osaki, H. Hayashi, A. Kishimoto, Domain engineering enhanced microwave tunability in nonstoichiometric Ba0.8Sr0.2TiO3. J. Am. Ceram. Soc. 101(2), 723–731 (2018)

    Article  CAS  Google Scholar 

  14. L. Wang, F. Gao, J. Xu, K. Zhang, J. Kong, M. Reece, H. Yan, Enhanced dielectric tunability and energy storage properties of plate-like Ba0.6Sr0.4TiO3/poly(vinylidene fluoride) composites through texture arrangement. Compos. Sci. Technol. 158, 112–120 (2018)

    Article  CAS  Google Scholar 

  15. C. Liu, L. Shi, Y. Lai, Y. Li, L. Jia, H. Su, J. Li, T. Wen, W. Ling, H. Zhang, B-site modification of (Ba0.6Sr0.4)TiO3 ceramics with enhanced diffuse phase transition behavior. Ceram. Int. 44(7), 8109–8115 (2018)

    Article  CAS  Google Scholar 

  16. Q. Xu, D. Zhan, H.X. Liu, W. Chen, D.-P. Huang, F. Zhang, Evolution of dielectric properties in BaZrxTi1-xO3 ceramics: Effect of polar nano-regions. Acta Mater. 61(12), 4481–4489 (2013)

    Article  CAS  Google Scholar 

  17. X.-F. Zhang, Q. Xu, H.X. Liu, W. Chen, M. Chen, B.H. Kim, Field history dependence of nonlinear dielectric properties of Ba0.6Sr0.4TiO3 ceramics under bias electric field: polarization behavior of polar nano-regions. Phys. B: Condens. Matter. 406(8), 1571–1576 (2011)

    Article  CAS  Google Scholar 

  18. R.X. Wang, J. Zhang, L.M. Zheng, L. Sun, Z.L. Luo, S.-T. Zhang, B. Yang, Evolution of polar nano-regions under electric field around ferro-paraelectric transition temperature and its contribution to piezoelectric property in pb(Mg1/3Nb2/3)O3-0.30PbTiO3 crystal. Ceram. Int. 44(15), 18084–18089 (2018)

    Article  CAS  Google Scholar 

  19. W. Wang, M. Zhang, L. Xin, S. Shen, J. Zhai, Effect of interface behavior on dielectric properties of ferroelectric-dielectric composite ceramics. J. Alloys Compd. 809, 151712 (2019)

    Article  CAS  Google Scholar 

  20. P.Z. Ge, X.G. Tang, Q.X. Liu, Y.P. Jiang, W.-H. Li, B. Li, Temperature-dependent dielectric relaxation and high tunability of (Ba1-xSrx)TiO3 ceramics. J. Alloys Compd. 731, 70–77 (2018)

    Article  CAS  Google Scholar 

  21. L. Ren, M. Zhang, L. Xin, J. Zhai, Effect of Fe-doping on the dielectric properties of BaTi0.8Sn0.2O3 ceramics. Solid State Sci. 131, 106939 (2022)

    Article  CAS  Google Scholar 

  22. D. Liang, X. Zhu, J. Zhu, J. Zhu, D. Xiao, Effects of CuO addition on the structure and electrical properties of low temperature sintered Ba(Zr,Ti)O3 lead-free piezoelectric ceramics. Ceram. Int. 40(2), 2585–2592 (2014)

    Article  CAS  Google Scholar 

  23. E. Chandrakala, J. Paul Praveen, B.K. Hazra, D. Das, Effect of sintering temperature on structural, dielectric, piezoelectric and ferroelectric properties of sol-gel derived BZT-BCT ceramics. Ceram. Int. 42(4), 4964–4977 (2016)

    Article  CAS  Google Scholar 

  24. J. Schultheiß, S. Checchia, H. Uršič, T. Frömling, J.E. Daniels, B. Malič, T. Rojac, J. Koruza, Domain wall-grain boundary interactions in polycrystalline pb(Zr0.7Ti0.3)O3 piezoceramics. J. Eur. Ceram. Soc. 40(12), 3965–3973 (2020)

    Article  Google Scholar 

  25. C. Zhu, X. Wang, Q. Zhao, Z. Cai, Z. Cen, L. Li, Effects of grain size and temperature on the energy storage and dielectric tunability of non-reducible BaTiO3-based ceramics. J. Eur. Ceram. Soc. 39(4), 1142–1148 (2019)

    Article  CAS  Google Scholar 

  26. Y. Tan, G. Viola, V. Koval, C. Yu, A. Mahajan, J. Zhang, H. Zhang, X. Zhou, N.V. Tarakina, H. Yan, On the origin of grain size effects in ba(Ti0.96Sn0.04)O3 perovskite ceramics. J. Eur. Ceram. Soc. 39(6), 2064–2075 (2019)

    Article  CAS  Google Scholar 

  27. P. Mao, J. Wang, S. Liu, L. Zhang, Y. Zhao, K. Wu, Z. Wang, J. Li, Improved dielectric and nonlinear properties of CaCu3Ti4O12 ceramics with Cu-rich phase at grain boundary layers. Ceram. Int. 45(12), 15082–15090 (2019)

    Article  Google Scholar 

  28. T. Fang, L. Mei, H. Ho, Effects of Cu stoichiometry on the microstructures, barrier-layer structures, electrical conduction, dielectric responses, and stability of CaCu3Ti4O12. Acta Mater. 54(10), 2867–2875 (2006)

    Article  CAS  Google Scholar 

  29. J. Boonlakhorn, N. Chanlek, J. Manyam, P. Srepusharawoot, P. Thongbai, Simultaneous two-step enhanced permittivity and reduced loss tangent in Mg/Ge-doped CaCu3Ti4O12 ceramics. J. Alloys Compd. 877, 160322 (2021)

    Article  CAS  Google Scholar 

  30. Z. Peng, J. Wang, P. Liang, J. Zhu, X. Zhou, X. Chao, Z. Yang, A new perovskite-related ceramic with colossal permittivity and low dielectric loss. J. Eur. Ceram. Soc. 40(12), 4010–4015 (2020)

    Article  CAS  Google Scholar 

  31. Z. Wang, C. Yuan, B. Zhu, Q. Feng, F. Liu, J. Xu, C. Zhou, G. Chen, Complex impedance spectroscopy of perovskite microwave dielectric ceramics with high dielectric constant. J. Am. Ceram. Soc 102(4), 1852–1865 (2019)

    CAS  Google Scholar 

  32. J. Boonlakhorn, P. Srepusharawoot, P. Thongbai, Distinct roles between complex defect clusters and insulating grain boundary on dielectric loss behaviors of (In3+/Ta5+) co-doped CaCu3Ti4O12 ceramics. Results  Phys. 16, 102886 (2020)

    Article  Google Scholar 

  33. C.C. Wu, C.F. Yang, Effect of V2O5 B-site substitution on the microstructure, Raman spectrum, and dielectric properties of SrBi2Ta2O9 ceramics. Sci. Rep. 10(1), 19147 (2020)

    Article  CAS  Google Scholar 

  34. H. Tao, J. Yin, C. Zhao, H. Wu, J. Wu, New role of relaxor multiphase coexistence in potassium sodium niobate ceramics: reduced electric field dependence of strain temperature stability. ACS Appl. Mater. Interf. 12(44), 49822–49829 (2020)

    Article  CAS  Google Scholar 

  35. K. Tsuji, A. Ndayishimiye, S. Lowum, R. Floyd, K. Wang, M. Wetherington, J.-P. Maria, C.A. Randall, Single step densification of high permittivity BaTiO3 ceramics at 300 ºC. J. Eur. Ceram. Soc. 40(4), 1280–1284 (2020)

    Article  CAS  Google Scholar 

  36. I. Coondoo, N. Panwar, D. Alikin, I. Bdikin, S.S. Islam, A. Turygin, V.Y. Shur, A.L. Kholkin, A comparative study of structural and electrical properties in lead-free BCZT ceramics: influence of the synthesis method. Acta Mater 155, 331–342 (2018)

    Article  CAS  Google Scholar 

  37. Y. He, Y. Peng, Y. Xu, The anomalous increase in tunability in Ba0.55Sr0.45TiO3-MgO–Mg2SiO4 composite ceramics. J. Am. Ceram. Soc 102(5), 2706–2717 (2019)

    CAS  Google Scholar 

  38. P. Long, X. Liu, X. Long, Z. Yi, Dielectric relaxation, impedance spectra, piezoelectric properties of (ba,ca)(Ti,Sn)O3 ceramics and their multilayer piezoelectric actuators. J. Alloys Compd. 706, 234–243 (2017)

    Article  CAS  Google Scholar 

  39. Z. Liu, H. Fan, J. Lu, Y. Mao, Y. Zhao, Tailored dielectric tunability of alkali niobate-based antiferroelectric/relaxor-ferroelectric composites. J. Eur. Ceram. Soc. 38(7), 2871–2878 (2018)

    Article  CAS  Google Scholar 

  40. N.Y. Chan, S.H. Choy, D.Y. Wang, Y. Wang, J.Y. Dai, H.L.W. Chan, High dielectric tunability of ferroelectric (Ba1-x,Srx)(Zr0.1,Ti0.9)O3 ceramics. J. Mater. Sci.: Mater. Electron. 25(6), 2589–2594 (2014)

    CAS  Google Scholar 

  41. Z. Liu, H. Fan, Y. Zhao, G. Dong, W. Jo, Optical and Tunable Dielectric Properties of K0.5Na0.5NbO3–SrTiO3 Ceramics. J. Am. Ceram. Soc. 99(1), 146–151 (2016)

    Article  CAS  Google Scholar 

  42. C. Liu, P. Liu, Microstructure and dielectric properties of BST ceramics derived from high-energy ball-milling. J. Alloys Compd. 584, 114–118 (2014)

    Article  CAS  Google Scholar 

  43. Z. Sun, W. Liu, Q. Li, Z. Tao, Y. Han, Relaxor behaviour and nonlinear dielectric properties of lead-free BZT-BZN composite ceramics. Ceram. Int. 47(2), 2086–2093 (2021)

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by National Natural Science Foundation of China (Grant Nos. 52175525, 61971211), Science and Technology Project of Henan Province (Grant No. 222102230032) and Guangdong Basic and Applied Basic Research Foundation (2019A1515110880).

Author information

Authors and Affiliations

Authors

Contributions

PY: investigation, formal analysis, data curation, writing—original draft, LZ: resources, investigation, data curation, visualization, HZ: data curation, resources, funding acquisition, BW: visualization, writing—review & editing, funding acquisition, LZ: data curation, visualization, writing—review & editing, supervision, SY: conceptualization, methodology, supervision, funding acquisition.

Corresponding authors

Correspondence to Lijuan Zhang or Shihui Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, P., Zhao, L., Zheng, H. et al. Large tunability properties of (Ba0.91Ca0.09)(Zr0.2Ti0.8)O3-x mol% CuO ceramics under bias of domain switching effect. J Mater Sci: Mater Electron 34, 811 (2023). https://doi.org/10.1007/s10854-023-10121-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10121-6

Navigation