Skip to main content
Log in

Nanostructured germanium synthesized by high-pressure chemical vapor deposition in mesoporous silica templates

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanostructured semiconductors are interesting because of their varied electronic and optical properties compared to the bulk. Using ordered porous materials as templates is an appealing approach to prepare nanostructured materials. However, the very small pore sizes (< 10 nm) of many mesoporous silicas make traditional deposition methods for germanium difficult, resulting in aggregated particles or voids in the deposited material. To overcome this challenge, high-pressure chemical vapor deposition (HPCVD) has been used to deposit germanium within the pore network of KIT-5 mesoporous silica. This technique allows for smooth, continuous deposition within small, tortuous pore networks. Both crystalline and amorphous materials can be produced, expanding the applicability of the resulting materials for various uses. The resulting nanocrystalline germanium has 5-nm features derived from the parent KIT-5 and is the smallest templated material prepared using HPCVD to date. This work represents the first time a three-dimensional mesoporous silica, with features ≤ 5 nm, has been uniformly filled with a semiconductor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Additional XRD analysis, indexed SAED patterns, and information about the additional mesoporous silica templates are provided as Supplementary Information. Other datasets are available from the corresponding author upon reasonable request.

References

  1. R. Rossetti, S. Nakahara, L. Brus, Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. J. Chem. Phys. 79, 1086–1088 (1983). https://doi.org/10.1063/1.445834

    Article  CAS  Google Scholar 

  2. W.D. King, D.L. Boxall, C.M. Lukehart, Nanoclusters of silicon and germanium. J. Clust. Sci. 8(2), 267–292 (1997)

    Article  CAS  Google Scholar 

  3. C. Claeys, E. Simoen (eds.), Germanium-Based Technologies: From Materials to Devices (Elsevier, Amsterdam, 2007)

    Google Scholar 

  4. K. Wada, L.C. Kimerling (eds.), Photonics and Electronics with Germanium (Wiley, Hoboken, 2015)

    Google Scholar 

  5. S. Oda, D.K. Ferry (eds.), Nanoscale Silicon Devices (CRC Press, Boca Raton, 2016)

    Google Scholar 

  6. E.G. Barbagiovanni, D.J. Lockwood, P.J. Simpson, L.V. Goncharova, Quantum confinement in Si and Ge nanostructures. J. Appl. Phys. 111(3), 034307-1–9 (2012). https://doi.org/10.1063/1.3680884

    Article  CAS  Google Scholar 

  7. C.J. Gommes, G. Prieto, J. Zecevic, M. Vanhalle, B. Goderis, K.P. DeJong, P.E. DeJongh, Mesoscale characterization of nanoparticles distribution using X-ray scattering. Angew. Chemie - Int. Ed. 127, 11970–11974 (2015). https://doi.org/10.1002/anie.201505359

    Article  CAS  Google Scholar 

  8. S. Lepoutre, J.H. Smått, C. Laberty, H. Amenitsch, D. Grosso, M. Lindén, Detailed study of the pore-filling processes during nanocasting of mesoporous films using SnO2/SiO2 as a model system. Microporous Mesoporous Mater. 123, 185–192 (2009). https://doi.org/10.1016/j.micromeso.2009.03.047

    Article  CAS  Google Scholar 

  9. F. Ehrburger-Dolle, I. Morfin, E. Geissler, F. Bley, F. Livet, C. Vix-Guterl, S. Saadallah, J. Parmentier, M. Reda, J. Patarin et al., Small-angle X-ray scattering and electron microscopy investigation of silica and carbon replicas with ordered porosity. Langmuir 19, 4303–4308 (2003). https://doi.org/10.1021/la0269457

    Article  CAS  Google Scholar 

  10. P. Krawiec, C. Weidenthaler, S. Kaskel, D. Mu, SiC/MCM-48 and SiC/SBA-15 nanocomposite materials. Chem. Mater. 3, 2869–2880 (2004)

    Article  Google Scholar 

  11. C.-W. Wu, Y. Yamauchi, T. Ohsuna, K. Kuroda, Structural study of highly ordered mesoporous silica thin films and replicated Pt nanowires by high-resolution scanning electron microscopy (HRSEM). J. Mater. Chem. 16, 3091 (2006). https://doi.org/10.1039/b604062d

    Article  CAS  Google Scholar 

  12. J.D. Holmes, D.M. Lyons, K.J. Ziegler, Supercritical fluid synthesis of metal and semiconductor nanomaterials. Chemistry A 9, 2144–2150 (2003). https://doi.org/10.1002/chem.200204521

    Article  CAS  Google Scholar 

  13. Y. Jiang, J.L. Carvalho-De-Souza, R.C.S. Wong, Z. Luo, D. Isheim, X. Zuo, A.W. Nicholls, I.W. Jung, J. Yue, D.J. Liu et al., Heterogeneous silicon mesostructures for lipid-supported bioelectric interfaces. Nat. Mater. 15, 1023–1030 (2016). https://doi.org/10.1038/nmat4673

    Article  CAS  Google Scholar 

  14. D. Sun, A.E. Riley, A.J. Cadby, E.K. Richman, S.D. Korlann, S.H. Tolbert, Hexagonal nanoporous germanium through surfactant-driven self-assembly of zintl clusters. Nature 441(7097), 1126–1130 (2006). https://doi.org/10.1038/nature04891

    Article  CAS  Google Scholar 

  15. G.S. Armatas, M.G. Kanatzidis, Mesostructured germanium with cubic pore symmetry. Nature 441, 1122–1125 (2006). https://doi.org/10.1038/nature04833

    Article  CAS  Google Scholar 

  16. G.S. Armatas, M.G. Kanatzidis, Hexagonal mesoporous germanium. Science 313, 817–820 (2006)

    Article  CAS  Google Scholar 

  17. G.S. Armatas, M.G. Kanatzidis, High-surface-area mesoporous germanium from oxidative polymerization of the deltahedral [Ge9]4- cluster: electronic structure modulation with donor and acceptor molecules. Adv. Mater. 20, 546–550 (2008). https://doi.org/10.1002/adma.200701751

    Article  Google Scholar 

  18. P.J.A. Sazio, A. Amezcua-Correa, C.E. Finlayson, J.R. Hayes, T.J. Scheidemantel, N.F. Baril, B.R. Jackson, D.J. Won, F. Zhang, E.R. Margine et al., Microstructured optical fibers as high-pressure microfluidic reactors. Science 311, 1583–1586 (2006). https://doi.org/10.1126/science.1124281

    Article  CAS  Google Scholar 

  19. N.F. Baril, R. He, T.D. Day, J.R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A.C. Peacock, N. Healy et al., Confined high-pressure chemical deposition of hydrogenated amorphous silicon. J. Am. Chem. Soc. 134, 19–22 (2012). https://doi.org/10.1021/ja2067862

    Article  CAS  Google Scholar 

  20. N.F. Baril, B. Keshavarzi, J.R. Sparks, M. Krishnamurthi, I. Temnykh, P.J.A. Sazio, A.C. Peacock, A. Borhan, V. Gopalan, J.V. Badding, High-pressure chemical deposition for void-free filling of extreme aspect ratio templates. Adv. Mater. 22, 4605–4611 (2010). https://doi.org/10.1002/adma.201001199

    Article  CAS  Google Scholar 

  21. R. He, P.J. Sazio, A.C. Peacock, N. Healy, J.R. Sparks, M. Krishnamurthi, V. Gopalan, J.V. Badding, Integration of Gigahertz-bandwidth semiconductor devices inside microstructured optical fibres. Nat. Photonics 6, 174–179 (2012). https://doi.org/10.1038/nphoton.2011.352

    Article  CAS  Google Scholar 

  22. R. He, T.D. Day, M. Krishnamurthi, J.R. Sparks, P.J.A. Sazio, V. Gopalan, J.V. Badding, Silicon P-i-n junction fibers. Adv. Mater. 25, 1461–1467 (2013). https://doi.org/10.1002/adma.201203879

    Article  CAS  Google Scholar 

  23. J.R. Sparks, R. He, N. Healy, S. Chaudhuri, T.C. Fitzgibbons, A.C. Peacock, P.J.A. Sazio, J.V. Badding, Conformal coating by high pressure chemical deposition for patterned microwires of II–VI semiconductors. Adv. Funct. Mater. 23, 1647–1654 (2013). https://doi.org/10.1002/adfm.201202224

    Article  CAS  Google Scholar 

  24. H.Y. Cheng, High Pressure Confined Chemical Vapor Deposition of Electronic Metalattices and Semiconductors in Extreme Geometries, Ph.D. Thesis, The Pennsylvania State University, August 2018.

  25. Y. Liu, S. Kempinger, R. He, T.D. Day, P. Moradifar, S.Y. Yu, J.L. Russell, V.M. Torres, P. Xu, T.E. Mallouk et al., Confined chemical fluid deposition of ferromagnetic metalattices. Nano Lett. 18, 546–552 (2018). https://doi.org/10.1021/acs.nanolett.7b04633

    Article  CAS  Google Scholar 

  26. P. Mahale, P. Moradifar, H.Y. Cheng, N.N. Nova, A.J. Grede, B. Lee, L.R. de Jesus, M. Wetherington, N.C. Giebink, J.V. Badding et al., Oxide-free three-dimensional germanium/silicon core−shell metalattice made by high-pressure confined chemical vapor deposition. ACS Nano 14, 12810–12818 (2020). https://doi.org/10.1021/acsnano.0c03559

    Article  CAS  Google Scholar 

  27. Y. Chen, Y. Liu, P. Moradifar, A.J. Glaid, J.L. Russell, P. Mahale, S.Y. Yu, T.E. Culp, M. Kumar, E.D. Gomez et al., Quantum transport in three-dimensional metalattices of platinum featuring an unprecedentedly large surface area to volume ratio. Phys. Rev. Mater. 4, 1–6 (2020). https://doi.org/10.1103/PhysRevMaterials.4.035201

    Article  Google Scholar 

  28. B.R. Jackson, P.J.A. Sazio, J.V. Badding, Single-crystal semiconductor wires integrated into microstructured optical fibers. Adv. Mater. 20, 1135–1140 (2008). https://doi.org/10.1002/adma.200701569

    Article  CAS  Google Scholar 

  29. B. Abad Mayor, J.L. Knobloch, T.D. Frazer, J.N. Hernandez-Charpak, H.Y. Cheng, A.J. Grede, N.C. Giebink, T.E. Mallouk, P. Mahale, N.N. Nova et al., Nondestructive measurements of the mechanical and structural properties of nanostructured metalattices. Nano Lett. 20, 3306–3312 (2020). https://doi.org/10.1021/acs.nanolett.0c00167

    Article  CAS  Google Scholar 

  30. G. Audoit, É.N. Mhuircheartaigh, S.M. Lipson, M.A. Morris, W.J. Blau, J.D. Holmes, Strain induced photoluminescence from silicon and germanium nanowire arrays. J. Mater. Chem. 15, 4809–4815 (2005). https://doi.org/10.1039/b510532c

    Article  CAS  Google Scholar 

  31. C.F. Blanford, C.B. Carter, Electron radiation damage of MCM-41 and related materials. Microsc. Microanal. 9, 245–263 (2003). https://doi.org/10.1017/S1431927603030447

    Article  CAS  Google Scholar 

  32. G. Kartopu, A.V. Sapelkin, V.A. Karavanskii, U. Serincan, R. Turan, Structural and optical properties of porous nanocrystalline Ge. J. Appl. Phys. 103, 11351817 (2008). https://doi.org/10.1063/1.2924417

    Article  CAS  Google Scholar 

  33. S.-Y. Yu. Electron Microscopy and Analytical Spectroscopy of Silicon and Germanium Metalattices, Ph.D. Thesis, The Pennsylvania State Univeristy, December 2017.

Download references

Acknowledgements

We thank Katya Bazilevskaya for help with nitrogen adsorption measurements, Ian Campbell for help with SAED indexing, Trevor Clark for FIB, and Alex Grede and Parivash Moradifar for discussions regarding characterization of these materials.

Funding

This work was supported by the National Science Foundation under MRSEC Grant No. DMR-1420620.

Author information

Authors and Affiliations

Authors

Contributions

BL designed and performed the experiments, interpreted data, and wrote the original draft of the manuscript. KW performed transmission electron microscopy, MW assisted with collection of Raman spectra, and NW assisted with interpretation of SAXS and WAXS data. JVB conceived the investigation and established the synthesis capability. SEM contributed to interpretation of data after the death of JVB and edited the manuscript.

Corresponding author

Correspondence to Suzanne E. Mohney.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 515 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laubacker, B., Wang, K., Wetherington, M. et al. Nanostructured germanium synthesized by high-pressure chemical vapor deposition in mesoporous silica templates. J Mater Sci: Mater Electron 34, 741 (2023). https://doi.org/10.1007/s10854-023-10101-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10101-w

Navigation