Skip to main content
Log in

Modulating carrier injection through rational control of hole transport layer for perovskite light-emitting diodes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Charge balance in the emissive layer through well-matched energy levels and reduced barrier of the transport layers can help to attain maximum radiative recombination. In this work, four hole transporting layers (HTLs) have been used to regulate the hole injection in the emissive layer. The HTLs have varying HOMO levels aligning with the work function of FTO and HOMO of the emissive layer. Among the four HTLs, NPD-based perovskite LED device demonstrated the best performance with the highest brightness of 24,343 cd m−2, current efficiency of 16.2 cd A−1, and turn-on voltage of 4.7 V. The main reason for such improved results was the well-matched HOMO of NPD with both the anode and emissive layer supporting enhanced hole injection. Both the photoluminescence and electroluminescence studies confirm pure green emission with CIE coordinates (0.22, 0.75). The best quality film morphology for NPD-based perovskite film supported efficient transport of the charges. The crystallinity of the NPD-based perovskite film was also found to be optimum. Finally, stability of the working PLEDs is tested and superior stability with 79% of the retention of initial brightness is observed for NPD-based device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data are available [from the authors] with the permission of the publisher. The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. N.K. Kumawat, A. Dey, K. Narasimhan, D. Kabra, ACS Photonics 2, 349 (2015)

    Article  CAS  Google Scholar 

  2. D. Das, P. Gopikrishna, D. Barman, R.B. Yathirajula, P.K. Iyer, Nano Converg. 6, 31 (2019)

    Article  Google Scholar 

  3. N.K. Kumawat, D. Gupta, D. Kabra, Energy Technol. 5, 1734 (2017)

    Article  CAS  Google Scholar 

  4. W. Faschinger, J. Nürnberger, Appl. Phys. Lett. 77, 187 (2000)

    Article  CAS  Google Scholar 

  5. A. Ren, H. Wang, W. Zhang et al., Nat. Electron. 4, 559 (2021)

    Article  Google Scholar 

  6. R. Garai, R.K. Gupta, A.S. Tanwar, M. Hossain, P.K. Iyer, Chem. Mater. 33, 5709 (2021)

    Article  CAS  Google Scholar 

  7. M.A. Afroz, R.K. Gupta, R. Garai, M. Hossain, S.P. Tripathi, P.K. Iyer, Org. Electron. 74, 172 (2019)

    Article  CAS  Google Scholar 

  8. G. Pacchioni, Nat. Rev. Mater. 6, 108 (2021)

    Article  CAS  Google Scholar 

  9. Z. Xiao, R.A. Kerner, L. Zhao et al., Nat. Photonics 11, 108 (2017)

    Article  CAS  Google Scholar 

  10. R. Garai, M.A. Afroz, R.K. Gupta, P.K. Iyer, Adv. Sustain. Syst. 4, 2000078 (2020)

    Article  CAS  Google Scholar 

  11. M. Hossain, R. Garai, R.K. Gupta, R.N. Arunagirinathan, P.K. Iyer, J. Mater. Chem. C 9, 10406 (2021)

    Article  CAS  Google Scholar 

  12. A. Choudhury, R.K. Gupta, R. Garai, P.K. Iyer, Adv. Mater. Interfaces 8, 2100574 (2021)

    Article  CAS  Google Scholar 

  13. S. Chu, W. Chen, Z. Fang et al., Nat. Commun. 12, 147 (2021)

    Article  CAS  Google Scholar 

  14. Y.-H. Kim, S. Kim, A. Kakekhani et al., Nat. Photonics 15, 148 (2021)

    Article  CAS  Google Scholar 

  15. V.F. Hamidabadi, A. Bahari, N. Mirnia, Appl. Phys. A 126, 1 (2020)

    Article  Google Scholar 

  16. R. Jbbar, A. Bahari, D.S. Ahmed, J. Electron. Mater. 49, 6276 (2020)

    Article  CAS  Google Scholar 

  17. V.F. Hamidabadi, C. Momblona, D. Pérez-Del-Rey, A. Bahari, M. Sessolo, H.J. Bolink, Dalton Trans. 48, 30 (2019)

    Article  Google Scholar 

  18. Q. Van Le, H.W. Jang, S.Y. Kim, Small Methods 2, 1700419 (2018)

    Article  Google Scholar 

  19. X. Zhang, H. Liu, W. Wang et al., Adv. Mater. 29, 1606405 (2017)

    Article  Google Scholar 

  20. Z. Wei, A. Perumal, R. Su et al., Nanoscale 8, 18021 (2016)

    Article  CAS  Google Scholar 

  21. R.K. Gupta, R. Garai, M. Hossain, A. Choudhury, P.K. Iyer, ACS Sustain. Chem. Eng. 9, 7993 (2021)

    Article  CAS  Google Scholar 

  22. L.A. Frolova, A.I. Davlethanov, N.N. Dremova et al., J. Phys. Chem. Lett. 11, 6772 (2020)

    Article  CAS  Google Scholar 

  23. H. Zhang, F. Ye, W. Li et al., Org. Electron. 67, 187 (2019)

    Article  CAS  Google Scholar 

  24. H. Zhang, F. Ye, W. Li et al., ACS Appl. Energy Mater. 2, 3336 (2019)

    Article  CAS  Google Scholar 

  25. S. Venkatesan, M. Hasan, J. Kim et al., J. Mater. Chem. C 5, 10114 (2017)

    Article  CAS  Google Scholar 

  26. X. Yang, X. Zhang, J. Deng et al., Nat. Commun. 9, 570 (2018)

    Article  Google Scholar 

  27. J. Kumar, R. Kumar, K. Frohna, D. Moghe, S.D. Stranks, M. Bag, Phys. Chem. Chem. Phys. 22, 26592 (2020)

    Article  CAS  Google Scholar 

  28. H. Cho, S.-H. Jeong, M.-H. Park et al., Science 350, 1222 (2015)

    Article  CAS  Google Scholar 

  29. K. Bruening, C.J. Tassone, J. Mater. Chem. A 6, 18865 (2018)

    Article  CAS  Google Scholar 

  30. M.-H. Park, S.-H. Jeong, H.-K. Seo et al., Nano Energy 42, 157 (2017)

    Article  CAS  Google Scholar 

  31. S.Y. Kim, H. Kang, K. Chang, H.J. Yoon, ACS Appl. Mater. Interfaces 13, 31236 (2021)

    Article  CAS  Google Scholar 

  32. R. Garai, R.K. Gupta, M. Hossain, P.K. Iyer, J. Mater. Chem. A 9, 26069 (2021)

    Article  CAS  Google Scholar 

  33. D. Das, P. Gopikrishna, R. Narasimhan, A. Singh, A. Dey, P.K. Iyer, Phys. Chem. Chem. Phys. 18, 33077 (2016)

    Article  CAS  Google Scholar 

  34. S.D. Stranks, R.L. Hoye, D. Di, R.H. Friend, F. Deschler, Adv. Mater. 31, 1803336 (2019)

    Article  CAS  Google Scholar 

  35. X. Zhang, W. Wang, B. Xu et al., Nano Energy 37, 40 (2017)

    Article  CAS  Google Scholar 

  36. Z. Wang, Z. Li, D. Zhou, J. Yu, Appl. Phys. Lett. 111, 233304 (2017)

    Article  Google Scholar 

  37. Y.-H. Kim, S.-H. Lee, J. Noh, S.-H. Han, Thin Solid Films 510, 305 (2006)

    Article  CAS  Google Scholar 

  38. Y. Zhou, S. Mei, D. Sun et al., Micromachines 10, 459 (2019)

    Article  Google Scholar 

  39. W. Wang, Z. Wu, T. Ye et al., J. Mater. Chem. C 9, 2115 (2021)

    Article  CAS  Google Scholar 

  40. X. Huang, R. Bäuerle, F. Scherz et al., J. Mater. Chem. C 9, 4344 (2021)

    Article  CAS  Google Scholar 

  41. Y. Zhou, S. Mei, J. Feng et al., RSC Adv. 10, 26381 (2020)

    Article  CAS  Google Scholar 

  42. X.-F. Peng, X.-Y. Wu, X.-X. Ji et al., J. Phys. Chem. Lett. 8, 4691 (2017)

    Article  CAS  Google Scholar 

  43. Y. Zhao, L. Chen, J. Wu, X. Tan, Z. Xiong, Y. Lei, IEEE Electron Device Lett. 41, 80 (2020)

    Article  Google Scholar 

  44. Y. Lei, Y. Zhao, Q. Zhang, Z. Xiong, L. Chen, Org. Electron. 81, 105683 (2020)

    Article  CAS  Google Scholar 

  45. Y. Zhao, J. Wu, L. Chen, X. Qiu, X. Tan, Y. Lei, IEEE Electron Device Lett. 43, 410 (2022)

    Article  CAS  Google Scholar 

  46. X. Gong, S.-H. Lim, J.C. Ostrowski, D. Moses, C.J. Bardeen, G.C. Bazan, J. Appl. Phys. 95, 948 (2004)

    Article  CAS  Google Scholar 

  47. T. Chassé, C.-I. Wu, I.G. Hill, A. Kahn, J. Appl. Phys. 85, 6589 (1999). https://doi.org/10.1063/1.370165

    Article  Google Scholar 

  48. D. Luo, C.-T. Hsieh, Y.-P. Wang, T.C. Chuang, H.-H. Chang, C.-H. Chang, RSC Adv. 8, 30582 (2018)

    Article  CAS  Google Scholar 

  49. B.R. Lee, J.C. Yu, J.H. Park et al., ACS Nano 12, 5826 (2018)

    Article  CAS  Google Scholar 

  50. Z. Li, Z. Chen, Y. Yang, Q. Xue, H.-L. Yip, Y. Cao, Nat. Commun. 10, 1027 (2019)

    Article  Google Scholar 

  51. F. Torricelli, D. Zappa, L. Colalongo, Appl. Phys. Lett. 96, 113304 (2010)

    Article  Google Scholar 

  52. V.I. Arkhipov, H. von Seggern, E.V. Emelianova, Appl. Phys. Lett. 83, 5074 (2003)

    Article  CAS  Google Scholar 

  53. Z. Wang, T. Cheng, F. Wang, S. Dai, Z. Tan, Small 12, 4412 (2016)

    Article  CAS  Google Scholar 

  54. A. Choudhury, R.K. Gupta, R. Garai, P.K. Iyer, ACS Appl. Electron. Mater. 3, 5393 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial Grants from DST, India, through the projects DST/CRG/2019/002164, Deity, India, no. 5(1)/2022-NANO, Max-Planck-Gesellschaft IGSTC/MPG/PG(PKI)/2011A/48 and MHRD, India, through SPARC project SPARC/2018–2019/P1097/SL. The Centre for Nanotechnology and Central Instrument Facility, IIT Guwahati, are acknowledged for instrument facilities.

Funding

This work was supported by DST, India, through the projects DST/CRG/2019/002164, Deity, India, no. 5(1)/2022-NANO, Max-Planck-Gesellschaft IGSTC/MPG/PG(PKI)/2011A/48 and MHRD, India, through SPARC project SPARC/2018–2019/P1097/SL.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. Material preparation, data collection, and analysis were performed by RBY, RKG, MAA, AC, and PKI. The first draft of the manuscript was written by RBY and RKG, and all authors commented on previous versions of the manuscript. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Parameswar Krishnan Iyer.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1152 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yathirajula, R.B., Gupta, R.K., Afroz, M.A. et al. Modulating carrier injection through rational control of hole transport layer for perovskite light-emitting diodes. J Mater Sci: Mater Electron 34, 729 (2023). https://doi.org/10.1007/s10854-023-10066-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10066-w

Navigation