Skip to main content
Log in

“GLASS” a novel framework platform for Judd-Ofelt theory: near infra-red photoluminescence studies of neodymium ions doped in barium zinc gadolinium borate glasses for lasing device applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The aim of the work is to prepare (79-x) B2O3 + 10ZnO + 10BaO + xGd2O3 + 1Nd2O3 where x = 0.0, 5.0, 10.0, 15.0, and 20.0 mol% glasses with various concentration of gadolinium trioxide were prepared and subjected to spectroscopic analysis to understand their behavior in optical and photoluminescence properties. Also, analyze the optical / radiative properties and compare with other reported literature. In this work, the novel platform “GLASS” program was used to evaluate the Judd-Ofelt (JO) theory to predict the JO parameters, using JO parameter the radiative properties of the prepared samples, such as branching ratios, stimulated emission cross section and radiative lifetime were determined. The examined near infra-red (NIR) photoluminescence (PL) emissions are related with interelectronic energy levels of the Nd3+ ion, stimulated with 582 and 805 nm. These glasses show intense NIR emission at 1.06 μm corresponding to 4I11/2. These outcomes show that the neodymium-doped gadolinium barium zinc borate glasses have considerable potential glass to be used in a broad range of NIR solid state device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Raw data were generated at the Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University, Nakhon Pathom, Thailand. Derived data supporting the findings of this study are available from the corresponding author upon request.

References

  1. P. Yua, W. Guoa, T. Gaoa, L. Sub, J. Xu, Spectroscopic properties of Nd-doped Bi2O3-GeO2/SiO2 glasses. Optik 162, 102–107 (2018). https://doi.org/10.1016/j.ijleo.2018.02.097

    Article  CAS  Google Scholar 

  2. B. Gajanan, Harde, G.G. Muley, Study of Spectroscopic Properties of pure and nd doped Ca3La2(BO3)4 glasses. Procedia Technol. 24, 727–732 (2016). https://doi.org/10.1016/j.protcy.2016.05.202

    Article  Google Scholar 

  3. R. Rajaramakrishna, W. Chaiphaksa, S.K. Nagesha, S. Kothan, J. Kaewkhao, X-Ray Luminescence, Photoluminescence, and Radiation Shielding Properties of Europium-Doped Oxide Glasses for Red Light-Emitting device applications. Phys. Status Solidi A (2022). https://doi.org/10.1002/pssa.202200411

    Article  Google Scholar 

  4. P. Thongyoy, C. Kedkaew, P. Meejitpaisan, P.H. Minh, T. Keawmon, R. Rajaramakrishna, J. Kaewkhao, 1.06µm emission of Nd3+-doped aluminium barium lithium phosphate glasses for near IR laser medium material. Optik - Int. J. Light Electron Optics 269, 169852 (2022). https://doi.org/10.1016/j.ijleo.2022.169852

    Article  CAS  Google Scholar 

  5. R. Rajaramakrishna, B. Knorr, V. Dierolf, R.V. Anavekar, H. Jain, Spectroscopic properties of Sm3+ -doped lanthanum borogermanate glass. J. Lumin. 156, 192–198 (2014). https://doi.org/10.1016/j.jlumin.2014.07.021

    Article  CAS  Google Scholar 

  6. R. Rajaramakrishna, S. Kothan, W. Busayaporn, N. Chanlek, H.J. Kim, P. Prongsamrong, J. Kaewkhao, Synchrotron, luminescence, and XPS studies of Gd3+:Dy3+:Ce3+ tri-rare-earth oxides in borate glasses. Radiat. Phys. Chem. 206, 110757 (2023). https://doi.org/10.1016/j.radphyschem.2023.110757

    Article  CAS  Google Scholar 

  7. S. Kaewjaeng, S. Kothan, N. Wantana, H.J. Kim, R. Rajaramakrishna, C. Jumpee, P. Limsuwan, J. Kaewkhao, Fabrication luminescence and radiation shielding properties of Gd2O3–La2O3–ZnO–B2O3–Sm2O3 glasses. Radiat. Phys. Chem. 202, 110537 (2023). https://doi.org/10.1016/j.radphyschem.2022.110537

    Article  CAS  Google Scholar 

  8. R. Rajaramakrishna, Y. Ruangtaweep, S. Sattayaporn, P. Kidkhunthod, S. Kothan, J. Kaewkhao, Structural analysis and luminescence studies of Ce3+: Dy3 + co-doped calcium zinc gadolinium borate glasses using EXAFS. Radiat. Phys. Chem. 171, 108695 (2020). https://doi.org/10.1016/j.radphyschem.2020.108695

    Article  CAS  Google Scholar 

  9. K. Kirdsiri, R. Raja Ramakrishna, B. Damdee, H.J. Kim, N. Nuntawong, M. Horphathum, J. Kaewkhao, Influence of alkaline earth oxides on Eu3+ doped lithium borate glasses for photonic, laser and radiation detection material applications. Solid State Sci. 89, 57–66 (2019). https://doi.org/10.1016/j.solidstatesciences.2018.12.019

    Article  CAS  Google Scholar 

  10. K. Kirdsiri, R. Raja Ramakrishna, B. Damdee, H.J. Kim, S. Kaewjaeng, S. Kothan, J. Kaewkhao, Investigations of optical and luminescence features of Sm3+ doped Li2O-MO-B2O3 (M = Mg/Ca/Sr/Ba) glasses mixed with different modifier oxides as an orange light emitting phosphor for WLED’s. J. Alloys Compd. 749, 197–204 (2018). https://doi.org/10.1016/j.jallcom.2018.03.266

    Article  CAS  Google Scholar 

  11. A. Phongsa, W. Rittisut, N. Wantana, N. Triamnak, S. Ngamsomrit, S. Rujirawat, P. Manyum, A. Prasatkhetragarn, R. Yimnirun, S. Kothan, H.J. Kim, R. Rajaramakrishna, J. Kaewkhao, White emission from Dy3+ doped Gd2O3–B2O3 glass for WLEDs encapsulation. Optik - I. J. Light Electron Optics 265, 169532 (2022). https://doi.org/10.1016/j.ijleo.2022.169532

    Article  CAS  Google Scholar 

  12. A.A. Menazea, SAwwad Nasser, A. Hala, M.K. IbrahiumAhmed, Radiat. Phys. Chem. 177, 109155 (2020). https://doi.org/10.1016/j.radphyschem.2020.109155

    Article  CAS  Google Scholar 

  13. M.J. Tommalieh, N.S. Awwad, H.A. Ibrahium, A.A. Menazea, Radiat. Phys. Chem. 179, 109195 (2021). https://doi.org/10.1016/j.radphyschem.2020.109195

    Article  CAS  Google Scholar 

  14. M.J. Tommalieh, A.M. Ismail, N.S. Awwad, H.A. Ibrahium, M.A. Youssef, A.A. Menazea, J. Electron. Mater. 49, 12 (2020). https://doi.org/10.1007/s11664-020-08459-2

    Article  CAS  Google Scholar 

  15. A. Aldalbahi, E. Mehrez, M.K. El-Naggar, G. Ahmed, M. Periyasami, A.A. Rahaman, Menazea, J. Mater. Res. Technol. 9(6), 15045 e15056 (2020). https://doi.org/10.1016/j.jmrt.2020.10.079

    Article  CAS  Google Scholar 

  16. A.A. Menazea, M.H. El-Newehy, B.M. Thamer, M.E. El-Naggar, J. Mol. Struct. 1225, 129163 (2021). https://doi.org/10.1016/j.molstruc.2020.129163

    Article  CAS  Google Scholar 

  17. B.R. Judd, Optical absorption intensities of rare-earth ions. Phys. Rev. 127, 750 (1962). https://doi.org/10.1103/PhysRev.127.750

    Article  CAS  Google Scholar 

  18. G.S. Ofelt, Intensities of Crystal Spectra of Rare-Earth Ions. J. Chem. Phys. 37, 511 (1962). https://doi.org/10.1063/1.1701366

    Article  CAS  Google Scholar 

  19. W.T. Carnall, P.R. Field, K. Rajnak, Electronic energy levels in the Trivalent Lanthanide Aquo Ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+. J. Chem. Phys. 49, 4424 (1968). https://doi.org/10.1063/1.1669893

    Article  CAS  Google Scholar 

  20. N.L. Boling, A. Glass, A. Owyoung, Empirical relationships for predicting non-linear refractive-index changes in optical solids. IEEE J. Quantum Electron. QE-14, 601 (1978). https://doi.org/10.1109/JQE.1978.1069847

    Article  Google Scholar 

  21. https://lasers.llnl.gov/multimedia/publications/pdfs/etr/1977_09.pdf

  22. J.H. Campbell, T.I. Suratwala, Nd-doped phosphate glasses for high-energy/ high-peak-power lasers. J. Non-Cryst Solids. 263, 318–341 (2000). https://doi.org/10.1016/S0022-3093(99)00645-6

    Article  Google Scholar 

  23. J. Tauc, R. Grigorovici, A. Vancu, Optical properties, and electronic structure of Amorphous Germanium. Phys. Status Solidi B 15, 627–637 (1966). https://doi.org/10.1002/pssb.19660150224

    Article  CAS  Google Scholar 

  24. E. Davis, N. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 22, 0903–0922 (1970). https://doi.org/10.1080/14786437008221061

    Article  CAS  Google Scholar 

  25. N.F. Mott, E.A. Davis Electronic Processes in Non-Crystalline Materials; OUP Oxford, 2012. ISBN: 978-0-I9-964533-6 (pbk)

  26. G.A. Kumar, R.E. Riman, A.A. Kaminskii, R. Praveena, C.K. Jayasankar, I.K. Bae, S.C. Chae, Y.N. Jang, Optical properties of single crystal Nd3+-doped Bi4Ge3O12: laser transitions at room and low temperature. Phy. Rev. B 74, 014306 (2006). https://doi.org/10.1103/PhysRevB.74.014306

    Article  CAS  Google Scholar 

  27. K. Upendra Kumar, V.A. Prathyusha, P. Babu, C.K. Jayasankar, A.S. Joshi, A. Speghini, M. Bettinelli, Fluorescence properties of Nd3+-doped tellurite glasses. Spectrochimica Acta Part A 67, 702–708 (2007). https://doi.org/10.1016/j.saa.2006.08.027

    Article  CAS  Google Scholar 

  28. ARenuka Devi, C.K. Jayasankar, Optical properties of Nd3+ ions in lithium borate glasses. Mater. Chem. Phys. 42(2), 106–119 (1995). https://doi.org/10.1016/0254-0584(95)01564-7

    Article  Google Scholar 

  29. K. Linganna, D. Viswanath, R. Narro-Garcia, S. Ju, W.–T. Han, C.K. Jayasankar, V. Venkatramu, Thermal and optical properties of Nd3+ ions in K-Ca-Al fluorophosphate glasses. J. Lumin. 166, 328–334 (2015). https://doi.org/10.1016/j.jlumin.2015.05.024

    Article  CAS  Google Scholar 

  30. R. Balakrishnaiah, P. Babu, C.K. Jayasankar, A.S. Joshi, A. Speghini, M. Bettinelli, Optical and luminescence properties of Nd3+ ions in K–Ba–Al-phosphate and fluorophosphate glasses. J. Phys.: Condens. Matter. 18, 165–179 (2006). https://doi.org/10.1088/0953-8984/18/1/012

    Article  CAS  Google Scholar 

  31. K. Udaya Kumar, P. Babu, Ch Basavapoornima, R. Praveena, D. Shobha Rani, C.K. Jayasankar, Spectroscopic properties of Nd3+-doped boro-bismuth glasses for laser applications. Phys. B 646, 414327 (2022). https://doi.org/10.1016/j.physb.2022.414327

    Article  CAS  Google Scholar 

  32. R. Vijaya, V. Venkatramu, P. Babu, L. Rama Moorthy, C.K. Jayasankar, 1.06 m laser transition characteristics of Nd3+-doped fluorophosphate glasses. Mater. Chem. Phys. 117, 131–137 (2009). https://doi.org/10.1016/j.matchemphys.2009.05.023

    Article  CAS  Google Scholar 

  33. R. Rajeswari, S. Surendra Babu, C.K. Jayasankar, Spectroscopic characterization of alkali modified zinc-tellurite glasses doped with neodymium. Spectrochimica Acta Part A 77, 135–140 (2010). https://doi.org/10.1016/j.saa.2010.04.040

    Article  CAS  Google Scholar 

  34. J.H. Choi, A. Margaryan, A. Margaryan, F.G. Shi, Judd–Ofelt analysis of spectroscopic properties of Nd3+-doped novel fluorophosphate glass. J. Lumin. 114, 167 (2005). https://doi.org/10.1016/j.jlumin.2004.12.015

    Article  CAS  Google Scholar 

  35. Y. Chen, Y. Huang, M. Huang, R. Chen, Z. Luo, Effect of Nd3+ on the spectroscopic properties of bismuth borate glasses. J. Am. Ceram. Soc. 88, 19 (2005). https://doi.org/10.1111/j.1551-2916.2004.00009.x

    Article  CAS  Google Scholar 

  36. D. Ramachari, L. Rama Moorthy, C.K. Jayasankar, Optical absorption and emission properties of Nd3+-doped oxyfluorosilicate glasses for solid state lasers. Infrared Phys. Technol. (2014). https://doi.org/10.1016/j.infrared.2014.09.020

    Article  Google Scholar 

  37. R. Rajaramakrishna, Y. Tariwong, N. Srisittipokakun, S. Kothan, J. Kaewkhao, 1.06 µm emission of neodymium doped P2O5 + Al2O3 + Li2O + BaO + Gd2O3/GdF3 glasses for solid-state NIR applications. J. Lumin. 257, 119650 (2023). https://doi.org/10.1016/j.jlumin.2022.119650

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The first author, R. Rajaramakrishna (RRK) would like to thank Prof. J. Kaewkhao (JK) and Prof S. Kothan (SK) for supporting and collaboration this work. J. Kaewkhao would like to thank National Research Council of Thailand (NRCT) under Research Grants for Talented Mid-Career Researchers Project (Project number N41A640097). This research was partially supported by Chiang Mai University.

Funding

This project is funded by National Research Council of Thailand (NRCT) under Research Grants for Talented Mid-Career Researchers Project (Project number N41A640097). Authors thank to Thailand Science Research and Innovation (TSRI) for partially supporting this research. This research was partially supported by Chiang Mai University.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by RRK, SK and JK. The first draft of the manuscript was written by RRK, review and re-editing were approved by JK and SK. Also, the authors discussed throughout the preparation of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to J. Kaewkhao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramakrishna, R.R., Kothan, S. & Kaewkhao, J. “GLASS” a novel framework platform for Judd-Ofelt theory: near infra-red photoluminescence studies of neodymium ions doped in barium zinc gadolinium borate glasses for lasing device applications. J Mater Sci: Mater Electron 34, 745 (2023). https://doi.org/10.1007/s10854-023-10060-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10060-2

Navigation