Skip to main content
Log in

Role of sintering temperature in tailoring the electrical properties of 0.98KNNS–0.02BNZSH piezoelectric ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lead-free 0.98(K0.5Na0.5)(Nb0.96Sb0.04O3)–0.02(Bi0.5Na0.5)(Zr0.8Sn0.1Hf0.1)O3 (0.98KNNS–0.02BNZSH) perovskite ferroelectric ceramics have been designed and prepared through the traditional ceramic fabrication technique. To have an insight on the effects of sintering temperature (in the range from 1020 to 1110 °C), the structural, microstructural, dielectric and ferro/piezoelectric properties of 0.98KNNS–0.02BNZSH ceramics are investigated systematically. The structural analysis has revealed a pure perovskite phase for sintering at different temperatures. The rhombohedral (R) and orthorhombic (O) phases coexist for sintering of 0.98KNNS–0.02BNZSH ceramic at 1080 °C, while the rhombohedral phase dominates above 1080 °C. The grains become more uniform and tightly packed when the sintering temperature is increased from 1020 to 1080 °C. However, the grain size and the density have been revealed to be decreased for samples sintered above 1080 °C. The conduction behavior of 0.98KNNS–0.02BNZSH ceramics has also been investigated using complex impedance spectroscopy. The optimum values of different dielectric and ferro/piezoelectric parameters for 0.98KNNS–0.02BNZSH ceramics sintered at 1080 °C are obtained to be as the following: TC ~ 317 °C, εmax ~ 7102, tanδ ~ 0.10, ρ ~ 4.49 g/cm3, d33 ~ 180 pC/N, and Pr ~ 16.7 µC/cm2. These findings show that crystallizability, density, and electrical properties are significantly influenced by the sintering temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data will be made available from the correspondingauthor on reasonable request.

References

  1. B. Jaffe, W.R. Cook, H. Jaffe, Piezoeletric Ceramics (Academic Press, New York, 1971)

    Google Scholar 

  2. K. Wang, J.F. Li, (K,na)NbO3-based lead-free piezoceramics: phase transition, sintering and property enhancement. J. Adv. Ceram. 1, 24–37 (2012)

    Article  CAS  Google Scholar 

  3. J.F. Li, K. Wang, F.Y. Zhu, L.Q. Cheng, F.Z. Yao, (K,na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges. J. Am. Ceram. Soc. 96, 3677–3696 (2013)

    Article  CAS  Google Scholar 

  4. J. Wu, D. Xiao, J. Zhu, Potassium–sodium niobate lead-free Piezoelectric materials: past, present, and future of phase boundaries. Chem. Rev. 115, 2559–2595 (2015)

    Article  CAS  Google Scholar 

  5. J. Wu, D. Xiao, J. Zhu, Potassium–sodium niobate lead-free piezoelectric ceramics: recent advances and perspectives. J. Mater. Sci.: Mater. Electron. 26, 9297–9308 (2015)

    CAS  Google Scholar 

  6. T. Zheng, J. Wu, D. Xiao, J. Zhu, Recent development in lead-free perovskite piezoelectric bulk materials. Prog Mater. Sci. 98, 552–624 (2018)

    Article  CAS  Google Scholar 

  7. R. Gaur, K.C. Singh, Effect of sintering parameters on the electrical and the piezoelectric properties of double-calcined (K0.48Na0.48Li0.04)(Nb0.96Sb0.04)O3 nanopowders. J. Korean Phys. Soc. 66, 800–805 (2015)

    Article  CAS  Google Scholar 

  8. A. Kumar, S. Kumari, V. Kumar, P. Kumar, V.N. Thakur, A. Kumar, P.K. Goyal, A. Arya, A.L. Sharma, Synthesis, phase confirmation and electrical properties of (1 – x)KNNS – xBNZSH lead-free ceramics. J. Mater. Sci.: Mater. Electron. 33, 6240–6252 (2022)

    CAS  Google Scholar 

  9. Y. Cheng, J. Xing, T. Wang, F. Wang, R. Li, X. Sun, L. Xie, Z. Tan, J. Zhu, Realization of densified microstructure and large piezoelectricity in KNN ceramics via the addition of oxide additives. J. Mater. Sci.: Mater. Electron. 32, 20211–20224 (2021)

    CAS  Google Scholar 

  10. C. Jiten, R. Gaur, R. Laishram, K.C. Singh, Effect of sintering temperature on the microstructural, dielectric, ferroelectric and piezoelectric properties of (Na0.5K0.5)NbO3 ceramics prepared from nanoscale powders. Ceram. Int. 42, 14135–14140 (2016)

    Article  CAS  Google Scholar 

  11. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics. Nature 432, 84–87 (2004)

    Article  CAS  Google Scholar 

  12. Z. Cen, S. Bian, Z. Xu, K. Wang, L. Guo, L. Li, X. Wang, Simultaneously improving piezoelectric properties and temperature stability of Na0.5K0.5NbO3 (KNN)-based ceramics sintered in reducing atmosphere. J. Adv. Ceram. 10, 820–831 (2021)

    Article  CAS  Google Scholar 

  13. P.K. Panda, B. Sahoo, M. Krishna, High d33 lead-free piezoceramics: a review. J. Electron. Mater. 51, 938–952 (2022)

    Article  CAS  Google Scholar 

  14. J. Wu, Perovskite lead-free piezoelectric ceramics. J. Appl. Phys. 127, 190901 (2020)

    Article  CAS  Google Scholar 

  15. Z. Cen, Y. Zhen, W. Feng, P. Zhao, L. Chen, X. Wang, L. Li, Sintering temperature effect on microstructure, electrical properties and temperature stability of MnO-modified KNN-based ceramics. J. Eur. Ceram. Soc. 38, 3136–3146 (2018)

    Article  CAS  Google Scholar 

  16. H. Wang, X. Zhao, J. Xu, X. Zhai, L. Yang, Effects of sintering temperature on structure and properties of 0.998[0.95(K0.5Na0.5)NbO3–0.05LiSbO3]–0.002BiFe0.8Co0.2O3 piezoelectric ceramics. J. Mater. Sci.: Mater. Electron. 26, 6129–6133 (2015)

    CAS  Google Scholar 

  17. Y.X. Liu, H.C. Thong, Y.Y.S. Cheng, J.W. Li, K. Wang, Defect-mediated domain-wall motion and enhanced electric-field-induced strain in hot-pressed K0.5Na0.5NbO3 lead-free piezoelectric ceramics. J. Appl. Phys. 129, 024102 (2021)

    Article  CAS  Google Scholar 

  18. G.H. Haertling, Properties of hot-pressed ferroelectric alkali niobate ceramics. J. Am. Ceram. Soc. 50, 329–330 (1967)

    Article  CAS  Google Scholar 

  19. R.E. Jaeger, L. Egerton, Hot pressing of potassium sodium niobates. J. Am. Ceram. Soc. 45, 209–213 (1962)

    Article  CAS  Google Scholar 

  20. T.L. Men, F.Z. Yao, Z.X. Zhu, K. Wang, J.F. Li, Piezoelectric properties of (K0.5Na0.5)NbO3-BaTiO3 lead-free ceramics prepared by spark plasma sintering. J. Adv. Dielectr. 6, 1–8 (2016)

    Article  Google Scholar 

  21. M. Li, N.Y. Chan, D. Wang, Improved thermal stability of the piezoelectric properties of (Li,Ag)-co-modified (K,na)NbO3-based ceramics prepared by spark plasma sintering. J. Am. Ceram. Soc. 100, 2984–2990 (2017)

    Article  CAS  Google Scholar 

  22. D. Kuscer, A. Kocjan, M. Majcen, A. Meden, K. Radan, J. Kovač, B. Malič, Evolution of phase composition and microstructure of sodium potassium niobate-based ceramic during pressure-less spark plasma sintering and post-annealing. Ceram. Int. 45, 10429–10437 (2019)

    Article  CAS  Google Scholar 

  23. Y. Zhang, M. Li, S. Yang, J. Zhai, Low-temperature sintering of KNN-based lead free ceramics. Solid State Commun. 324, 114133 (2021)

    Article  CAS  Google Scholar 

  24. D. Wang, K. Zhu, H. Ji, J. Qiu, Two-step sintering of the pure K0.5Na0.5NbO3 lead-free piezoceramics and its piezoelectric properties. Ferroelectrics 392, 120–126 (2009)

    Article  CAS  Google Scholar 

  25. C. Li, Z. Lu, Effect of CeO2 and CuO sintering additives on the properties of KNN-based piezoelectric ceramics. Mater. Technol. 33, 474–478 (2018)

    Article  CAS  Google Scholar 

  26. Y. Zhao, R. Huang, R. Liu, X. Wang, H. Zhou, Enhanced dielectric and piezoelectric properties in Li/Sb-modified (na,K)NbO3 ceramics by optimizing sintering temperature. Ceram. Int. 39, 425–429 (2013)

    Article  CAS  Google Scholar 

  27. Y. Chen, D. Xue, Y. Ma, Z. Chen, X. Jiang, G. Liu, X. Liu, Piezoelectric and dielectric properties of 0.995K0.48Na0.48Li0.04Nb(1-x)SbxO3–0.005BiAlO3 lead-free piezoelectric ceramics. Mater. Res. Bull. 84, 240–244 (2016)

    Article  CAS  Google Scholar 

  28. D. Xue, Y. Liu, M. Shi, P. Wang, L. Zhang, G. Liu, Z. Chen, Y. Chen, Composition dependence of phase structure and piezoelectric properties in (0.98 – x)(K0.4Na0.6)NbO3–0.02CaZrO3–xBi0.5Na0.5HfO3 ternary ceramics. J. Mater. Sci.: Mater. Electron. 29, 2072–2079 (2018)

    CAS  Google Scholar 

  29. Z.Y. Shen, Y. Zhen, K. Wang, J.F. Li, Influence of sintering temperature on grain growth and phase structure of compositionally optimized high-performance Li/Ta-modified (Na,K)NbO3 ceramics. J. Am. Ceram. Soc. 92, 1748–1752 (2009)

    Article  CAS  Google Scholar 

  30. J. Xing, Z. Tan, L. Jiang, Q. Chen, J. Wu, W. Zhang, D. Xiao, J. Zhu, Phase structure and piezoelectric properties of (1-x)K0.48Na0.52Nb0.95Sb0.05O3-x (Bi0.5Na0.5)0.9(Li0.5Ce0.5)0.1ZrO3 lead-free piezoelectric ceramics. J. Appl. Phys. 119, 034101 (2016)

    Article  Google Scholar 

  31. Z. Cen, Z. Dong, Z. Xu, F.Z. Yao, L. Guo, L. Li, X. Wang, Improving fatigue properties, temperature stability and piezoelectric properties of KNN-based ceramics via sintering in reducing atmosphere. J. Eur. Ceram. Soc. 41, 4462–4472 (2021)

    Article  CAS  Google Scholar 

  32. A. Kumar, S. Kumari, V. Kumar, Thermo-gravimetric and XRD analysis of KNN-based lead-free ceramics. in AIP Conf. Proc., vol.  2265, p. 0310 (2020)

  33. J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Cryst. 11, 102 (1978)

    Article  CAS  Google Scholar 

  34. V. Uvarov, I. Popov, Metrological characterization of X-ray diffraction methods for determination of crystallite size in nano-scale materials. Mater. Charact. 85, 111 (2013)

    Article  CAS  Google Scholar 

  35. X. Lu, B. Fang, S. Zhang, N. Yuan, J. Ding, X. Zhao, F. Wang, Y. Tang, W. Shi, H. Xu, H. Luo, Decreasing sintering temperature for BCZT lead-free ceramics prepared via hydrothermal route. Funct. Mater. Lett. 10, 1750046 (2017)

    Article  CAS  Google Scholar 

  36. J.P. Sharma, D. Kumar, A.K. Sharma, Structural and dielectric properties of pure potassium sodium niobate (KNN) lead free ceramics. Solid State Commun. 334–335, 114345 (2021)

    Article  Google Scholar 

  37. S. Dwivedi, T. Pareek, S. Kumar, Structure, dielectric, and piezoelectric properties of K0.5Na0.5NbO3-based lead-free ceramics. RSC Adv. 8, 24286–24296 (2018)

    Article  CAS  Google Scholar 

  38. R. Wen, L. Zhou, X. Zou, L. Luo, N. Jiang, Q. Zheng, J. Liao, C. Xu, D. Lin, Phase transition, electrical and luminescent properties of Dy-doped K0.5Na0.5NbO3-based lead-free ceramics. J. Mater. Sci.: Mater. Electron. 26, 8341–8349 (2015)

    CAS  Google Scholar 

  39. X. Lv, J. Wu, J. Zhu, D. Xiao, X. Zhangb, A new method to improve the electrical properties of KNN-based ceramics: tailoring phase fraction. J. Eur. Ceram. Soc. 38, 85–94 (2018)

    Article  Google Scholar 

  40. Q. Yin, C. Wang, Y. Wang, S. Li, Q. Zhang, J. Yang, C. Tian, Structure and properties of (K0.5Na0.5)0.98Ag0.02Nb0.96Ta0.04O3 piezoelectric ceramics doped by CuO. J. Mater. Sci.: Mater. Electron. 29, 9268–9274 (2018)

    CAS  Google Scholar 

  41. S. Kumari, A. Kumar, A. Kumar, V. Kumar, V.N. Thakur, A. Kumar, P.K. Goyal, A. Gaur, A. Arya, A.L. Sharma, Enhanced Curie temperature and superior temperature stability by site selected doping in BCZT based lead-free ceramics. Ceram. Int. 48, 13780–13793 (2022)

    Article  CAS  Google Scholar 

  42. K. Chen, J. Ma, C. Shi, W. Wu, B. Wu, Enhanced temperature stability in high piezoelectric performance of (K,na)NbO3-based lead-free ceramics trough co-doped antimony and tantalum. J. Alloys Compd. 852, 156865 (2021)

    Article  CAS  Google Scholar 

  43. R. Mahbub, T. Fakhrul, M.F. Islam, M. Hasan, A. Hussain, M.A. Matin, M.A. Hakim, Structural, dielectric, and magnetic properties of Ba-doped multiferroic bismuth ferrite. Acta Metall. Sin. Engl. Lett. 28, 958–964 (2015)

    Article  CAS  Google Scholar 

  44. S. Sharma, H. Sharma, S. Kumar, S. Thakur, R.K. Kotnala, N.S. Negi, Analysis of sintering temperature effects on structural, dielectric, ferroelectric, and piezoelectric properties of BaZr0.2Ti0.8O3 ceramics prepared by sol–gel method. J. Mater. Sci.: Mater. Electron. 31, 19168–19179 (2020)

    Google Scholar 

  45. K. Parida, S.K. Dehury, R.N.P. Choudhary, Structural, electrical and magneto-electric characteristics of complex multiferroic perovskite Bi0.5Pb0.5Fe0.5Ce0.5O3. J. Mater. Sci.: Mater. Electron. 27, 11211–11219 (2016)

    CAS  Google Scholar 

  46. S. Kumari, A. Kumar, V. Kumar, S.K. Dubey, P.K. Goyal, S. Kumar, A.L. Sharma, A. Arya, Structural, dielectric and ferroelectric properties of Cu2+- and Cu2+/Bi3+-doped BCZT lead-free ceramics: a comparative study. J. Mater. Sci.: Mater. Electron. 32, 16900–16915 (2021)

    CAS  Google Scholar 

  47. J. Wang, B. He, Y. Du, C. Cheng, Y. Liu, W. Liu, J. Ma, H. Xu, Improved electrical properties and luminescence properties of lead-free KNN ceramics via phase transition. J. Mater. Sci.: Mater. Electron. 32, 28819–28829 (2021)

    CAS  Google Scholar 

  48. Y. Liu, Y. Du, C. Cheng, X. Sun, N. Jiang, J. Wang, X. Sun, Dielectric and impedance spectroscopy analysis of lead-free (1-x)(K0.44Na0.52Li0.04)(Nb0.86Ta0.10Sb0.04)O3-xBaTiO3 ceramics. Ceram. Int. 45, 13347–13353 (2019)

    Article  CAS  Google Scholar 

  49. Y. Zhou, B. Fang, S. Zhang, X. Lu, J. Ding, Dielectric performance and conductive mechanism of KNN-based ceramics prepared via sol–gel core–shell process. J. Mater. Sci.: Mater. Electron. 33, 10977–10989 (2022)

    CAS  Google Scholar 

  50. S. Dwivedi, M. Badole, H.N. Vasavan, S. Kumar, Influence of annealing environments on the conduction behaviour of KNN-based ceramics. Ceram. Int. 48, 18057–18066 (2022)

    Article  CAS  Google Scholar 

  51. M. Wang, J. Xie, K. Xue, L. Li, Effects of Zn2+/Mg2+ ratio on dielectric properties of BaTiO3-based ceramics with excellent temperature stability: experiments and the first-principle calculations. Ceram. Int. 48, 847–854 (2022)

    Article  CAS  Google Scholar 

  52. X. Lv, Z. Li, J. Wu, J. Xi, M. Gong, D. Xiao, J. Zhu, Enhanced piezoelectric properties in potassium-sodium niobate-based ternary ceramics. Mater. Des. 109, 609–614 (2016)

    Article  CAS  Google Scholar 

  53. L. Jin, F. Li, S. Zhang, Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J. Am. Ceram. Soc. 97, 1–27 (2014)

    Article  CAS  Google Scholar 

  54. A. Jain, Y.G. Wang, H. Guo, Microstructure induced ultra-high energy storage density coupled with rapid discharge properties in lead-free Ba0.9Ca0.1Ti0.9Zr0.1O3–SrNb2O6 ceramics. Ceram. Int. 47, 487–499 (2021)

    Article  CAS  Google Scholar 

  55. R. Kumar, S. Singh, Giant electrocaloric and energy storage performance of [(K0.5Na0.5)NbO3](1–x)-[LiSbO3]x nanocrystalline ceramics. Sci. Rep. 8, 3186 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors, A. Kumar and S. Kumari acknowledge the CSIR-New Delhi for providing fellowship as CSIR-SRF.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

AK: Conceptualization, Methodology, Data curation, Writing-original draft, Visualization. SK: Conceptualization, Methodology, Data curation, Formal analysis. VK: Conceptualization, Investigation, Formal analysis, Visualization, Resources, Supervision, Writing—review & editing. AK: Conceptualization, Writing—review & editing, Resources. PKG: Conceptualization, Investigation, Formal analysis, Writing—review & editing. SA: Conceptualization, Writing—review & editing, Resources. AA: Methodology, Investigation, Formal analysis, Writing—review & editing. ALS: Conceptualization, Methodology, Investigation, Resources, Writing-review & editing.

Corresponding author

Correspondence to V. Kumar.

Ethics declarations

Conflict of interest

The authors declare that there is no known financial interests that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Consent from authors

All authors have duly approved the manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Kumari, S., Kumar, V. et al. Role of sintering temperature in tailoring the electrical properties of 0.98KNNS–0.02BNZSH piezoelectric ceramics. J Mater Sci: Mater Electron 34, 567 (2023). https://doi.org/10.1007/s10854-023-10024-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10024-6

Navigation