Skip to main content

Advertisement

Log in

Microstructure and dielectric properties of Bi(Li0.5Ta0.5)O3-modified Ba0.6Sr0.4Ti0.7Zr0.3O3-based ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A series of lead-free perovskite-structured dielectric ceramics of (1-x)Ba0.6Sr0.4Ti0.7Zr0.3O3-xBi(Li0.5Ta0.5)O3 ((1-x)BSTZ-xBLT, x = 0, 0.10, 0.15, and 0.20) were prepared through solid-state reaction method combined with conventional sintering. Specifically, for x = 0, 0.10, 0.15, and 0.20, the samples of (1-x)BSTZ-xBLT were sintered in air for 8 h at 1500 °C, 1300 °C, 1200 °C, and 1150 °C, respectively. All samples possess a pure perovskite structure and achieve a high relative density of 93 ~ 95%. The average grain size of all samples falls within 1.74 ~ 2.67 μm, and all composition elements distribute uniformly. The addition of BLT is conducive to reduce the sintering temperature of BSTZ. The critical electric field corresponding to the saturation polarization intensity of BSTZ increases from 69.4 kV/cm to 88.9 kV/cm as x rises from 0 to 0.10. The dielectric permittivity of 0.85BSTZ-0.15BLT and 0.80BSTZ-0.20BLT keeps stable (∆\(\varepsilon\)/\(\varepsilon\) 25 °C ≤  ± 15%) in the test temperature of − 100 ~ 350 °C. The activation energy (\(E\)α) of BSTZ enhances from 0.86 eV to 1.72 eV as x rises from 0 to 0.20, which contributes to the broadening of the band gap. These results suggest that (1-x)BSTZ-xBLT ceramics are promising candidates for high-temperature ceramic capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data presented in this study are available upon request from the corresponding author.

References

  1. S.Y. Zhou, Y.P. Pu, X.Y. Zhao, O. Tao, J.M. Ji, Dielectric temperature stability and energy storage performance of NBT-based ceramics by introducing high-entropy oxide. J. Am. Ceram Soc. 105, 4796–4804 (2022). https://doi.org/10.1111/jace.18455

    Article  CAS  Google Scholar 

  2. X.L. Chen, G.S. Huang, D.D. Ma, G.F. Liu, H.F. Zhou, High thermal stability and low dielectric loss of BaTiO3-Bi(Li1/3Zr2/3)O3 solid solution. Ceram. Int. 43, 926–929 (2017). https://doi.org/10.1016/j.ceramint.2016.10.099

    Article  CAS  Google Scholar 

  3. M. Jia, X. Chen, W.O. Yang, J. Wang, H. Li, J. Fang, Microstructure, dielectric, and energy storage properties of BaTiO3 ceramics prepared via cold sintering. Ceram. Int. 44, 4436–4441 (2018). https://doi.org/10.1016/j.ceramint.2017.12.044

    Article  CAS  Google Scholar 

  4. Z. Chen, F. Chen, X. Zhong, Z. Ling, Z. Tang, G. Jian, Enhanced ferroelectric relaxor behavior of Ho2O3-modified barium zirconate titanate ceramics. J. Mater. Sci. Mater. Electron. 29, 16730–16739 (2018). https://doi.org/10.1007/s10854-018-9766-9

    Article  CAS  Google Scholar 

  5. X. Tang, K. Wang, K. Chew, W. Chan, Relaxor behavior of (Ba, Sr)(Zr, Ti)O3 ferroelectric ceramics. Solid State Commun. 136, 89–93 (2005). https://doi.org/10.1016/j.ssc.2005.06.034

    Article  CAS  Google Scholar 

  6. X.L. Chen, X. Li, J. Sun, C. Sun, J. Shi, F. Pang, H. Zhou, Simultaneously achieving ultrahigh energy storage density and energy efficiency in barium titanate based ceramics. Ceram. Int. 46, 2764–2771 (2020). https://doi.org/10.1016/j.ceramint.2019.09.265

    Article  CAS  Google Scholar 

  7. W.B. Li, D. Zhou, R. Xu, L.X. Pang, M. Reaney, BaTiO3-Bi(Li0.5Ta0.5)O3, lead-free ceramics, and multilayers with high energy storage density and efficiency. ACS Appl. Energy Mater. 1, 5016–23 (2018). https://doi.org/10.1021/acsaem.8b01001

    Article  CAS  Google Scholar 

  8. J. Li, J. Liu, M.S. Zeng, Z.F. He, H.Q. Li, Y. Yuan, S. Zhang, High efficiency and power density relaxor ferroelectric Sr0.875Pb0.125TiO3-Bi(Mg0.5Zr0.5)O3 ceramics for pulsed power capacitors. J. Eur. Ceram. Soc. 40, 2907–16 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.03.037

    Article  CAS  Google Scholar 

  9. L. Zhang, L. Pang, W. Li, D. Zhou, Extreme high energy storage efficiency in perovskite structured (1–x)(Ba0.8Sr0.2)TiO3-xBi(Zn2/3Nb1/3)O3 (0.04 ≤ x ≤ 0.16) ceramics. J. Eur. Ceram. Soc. 40, 3343–47 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.03.015

    Article  CAS  Google Scholar 

  10. C.Y. Luo, Y. Wei, Q. Feng, M. Wang, N.N. Luo, C.L. Yuan, C. Zhou, T. Fujita, J.W. Xu, Significantly enhanced energy-storage properties of Bi0.47Na0.47Ba0.06TiO3-CaHfO3 ceramics by introducing Sr0.7Bi0.2TiO3 for pulse capacitor application. Chem. Eng. J. 429, 1321–65 (2022). https://doi.org/10.1016/j.cej.2021.132165

    Article  CAS  Google Scholar 

  11. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976). https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  12. J. Cyd, Effects of sintering temperature on the dielectric and piezoelectric properties of Sr additive Sm-modified PbTiO3 ceramics. Sensor Actuat A-Phys. 102, 6–10 (2002). https://doi.org/10.1016/S0924-4247(02)00382-5

    Article  Google Scholar 

  13. H. Di, Z.B. Pan, X.Y.T.F. Yang, J. Ding, X. Zhang, P. Li, J.J. Liu, J. Zhai, H. Pan, Optimization the energy density and efficiency of BaTiO3-based ceramics for capacitor applications. Chem. Eng. J. 409, 1273–1275 (2021). https://doi.org/10.1016/j.cej.2020.127375

    Article  CAS  Google Scholar 

  14. Q. Xu, M. Chen, W. Chen, H.X. Liu, B.H. Kim, B.K. Ahn, Effect of CoO additive on structure and electrical properties of (Na0.5Bi0.5)0.93Ba0.07TiO3 ceramics prepared by the citrate method. Acta. Mater. 56, 642–50 (2008). https://doi.org/10.1016/j.actamat.2007.10.014

    Article  CAS  Google Scholar 

  15. L.N. Shi, Y.G. Wang, Z.H. Ren, A. Jain, S.S. Jiang, F.G. Chen, Significant improvement in electrical characteristics and energy storage performance of NBT-based ceramics. Ceram. Int. 48, 26973–26983 (2022). https://doi.org/10.1016/j.ceramint.2022.06.009

    Article  CAS  Google Scholar 

  16. H.R. Ye, F. Yang, Z.B. Pan, D. Hu, X.J. Lv, H. Chen, F.F. Wang, J.S. Wang, P. Li, J.W. Chen, J.J. Liu, J. Zhai, Significantly improvement of comprehensive energy storage performances with lead-free relaxor ferroelectric ceramics for high-temperature capacitors applications. Acta Mater. 203, 1164–1184 (2021). https://doi.org/10.1016/j.actamat.2020.116484

    Article  CAS  Google Scholar 

  17. J. Chen, Y. Wang, L. Wu, Q. Hu, Y. Yang, Effect of nanocrystalline structures on the large strain of LiNbO3 doped (Bi0.5Na0.5)TiO3-BaTiO3 materials. J. Alloys Compd. 775, 865–871 (2018). https://doi.org/10.1016/j.jallcom.2018.10.195

    Article  CAS  Google Scholar 

  18. Q. Xu, T.M. Li, H. Hao, S.J. Zhang, Z.J. Wang, Enhanced energy storage properties of NaNbO3 modified Bi0.5Na0.5TiO3 based ceramics. J. Eur. Ceram. Soc. 35, 545–553 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.09.003

    Article  CAS  Google Scholar 

  19. W.B. Hu, Z. Chen, Z. Lu, X. Wang, X.F. Fu, Effect of Bi2O3 and Ho2O3 co-doping on the dielectric properties and temperature reliability of X8R BaTiO3-based ceramics. Ceram. Int. 47, 24982–24987 (2021). https://doi.org/10.1016/j.ceramint.2021.05.226

    Article  CAS  Google Scholar 

  20. T.Y. Li, Z.L. Qiao, R.Z. Zuo, X9R-type Ag1-3BiNbO3 based lead-free dielectric ceramic capacitors with excellent energy-storage properties. Ceram. Int. 48, 2533–2537 (2022). https://doi.org/10.1016/j.ceramint.2021.10.035

    Article  CAS  Google Scholar 

  21. X. Li, X.L. Chen, H.F. Zhou, J. Sun, X.X. Li, Phase evolution, microstructure, thermal stability and conductivity behavior of (Ba1-xBi0.67xK0.33x)(Ti1-xBi0.33xSn0.67x)O3 solid solutions ceramics. J. Alloys Compd. 777, 1066–1073 (2019). https://doi.org/10.1016/j.jallcom.2018.11.129

    Article  CAS  Google Scholar 

  22. Q. Xu, M.T. Lanagan, X.C. Huang, J. Xie, L. Zhang, H. Hao, Dielectric behavior and impedance spectroscopy in lead-free BNT-BT-NBN perovskite ceramics for energy storage. Ceram. Int. 42, 9728–9736 (2016). https://doi.org/10.1016/j.ceramint.2016.03.062

    Article  CAS  Google Scholar 

  23. Z. Li, H.Q. Fan, Polaron relaxation associated with the localized oxygen vacancies in Ba0.85Sr0.15TiO3 ceramics at high temperatures. J. Appl. Phys. 106, 054–102 (2009). https://doi.org/10.1063/1.3211308

    Article  CAS  Google Scholar 

  24. X. Qiao, F. Zhang, D. Wu, B. Chen, X. Zhao, Z.H. Peng, X. Ren, P. Liang, X.L. Chao, Z. Yang, Superior comprehensive energy storage properties in Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chem. Eng. J. 388, 1241–58 (2020). https://doi.org/10.1016/j.cej.2020.124158

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (52262018), Yunnan Provincial Natural Science Key Foundation (202201AS070032), Yunnan Major Scientific and Technological Projects (202202AG050016), Yunnan Ten Thousand Talents Plan Young & Elite Talents Project (YNWR-QNBJ-2018–176), and National Undergraduate Training Programs for Innovation and Entrepreneurship (20211067400136).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the experimental design, data analysis, and manuscript organization. WL and BM designed the experimental plan, performed research, analyzed data, and wrote the paper. QY and XP analyzed the XRD data and revised the English grammar. CF, HZ, and YC reviewed and edited the manuscript at different stages.

Corresponding authors

Correspondence to Qingqing Yang or Bin Meng.

Ethics declarations

Conflict of interest

The authors have no competing interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, W., Yang, Q., Meng, B. et al. Microstructure and dielectric properties of Bi(Li0.5Ta0.5)O3-modified Ba0.6Sr0.4Ti0.7Zr0.3O3-based ceramics. J Mater Sci: Mater Electron 34, 554 (2023). https://doi.org/10.1007/s10854-023-10015-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10015-7

Navigation