Skip to main content

Advertisement

Log in

Growth, structural, optical, and thermal behavior of bibenzyl organic single crystal for scintillator applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bibenzyl organic single crystal scintillator with the dimensions of 8 mm × 6 mm × 4 mm was grown by solution growth technique at room temperature. X-ray diffraction studies reveal that bibenzyl is crystallized in monoclinic crystal structure with P21/a space group. The characteristic functional groups were identified through FTIR and Raman spectral measurements. UV–visible absorption analysis shows that the crystal exhibits around 70% of transmittance in the visible region with the optical bandgap energy of 3.65 eV. The photoluminescence measurements show two violet emission bands with the maximum peak at 355 nm and a shoulder at 372 nm. A very short prompt fluorescence and delayed fluorescence with decay time of 0.6 ns and 3.01 ns, respectively, were observed for a bibenzyl single crystal. Thermal behavior of the bibenzyl crystal was examined using thermogravimetric analysis and differential thermal analysis. Hirshfeld surface analysis was employed to investigate the numerous intermolecular interactions in the bibenzyl crystal. H…H interaction is 63.6%, which is evidence for the hydrogen abundance in the molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the finding of this study are available from the corresponding author upon reasonable request.

References

  1. M.C. Hamel, J.K. Polack, M.L. Ruch, M.J. Marcath, S.D. Clarke, S.A. Pozzi, Sci. Rep. 7, 7997 (2017)

    Article  Google Scholar 

  2. K.A. Beyer, A. Di Fulvio, L. Stolarczyk, W. Parol, N. Mojzeszek, R. Kopéc, S.D. Clarke, S.A. Pozzi, Radiat. Prot. Dosimetry 180, 355 (2018)

    Article  CAS  Google Scholar 

  3. G.F. Knoll, Radiation detection and measurement (Wiley, New York, 2010)

    Google Scholar 

  4. J.S. Carlson, P. Marleau, R.A. Zarkesh, P.L. Feng, J. Am. Chem. Soc. 139, 9621 (2017)

    Article  CAS  Google Scholar 

  5. G. Hull, N.P. Zaitseva, N.J. Cherepy, J.R. Newby, W. Stoeffl, S.A. Payne, IEEE Trans. Nucl. Sci. 56, 899 (2009)

    Article  CAS  Google Scholar 

  6. N. Zaitseva, L. Carman, A. Glenn, J. Newby, M. Faust, S. Hamel, N. Cherepy, S. Payne, J. Cryst. Growth 314, 163 (2011)

    Article  CAS  Google Scholar 

  7. R.B. Owen, IRE Trans. Nucl. Sci. 5, 198 (1958)

    Article  CAS  Google Scholar 

  8. G.T. Wright, Proc. Phys. Soc. Sec B 69, 358 (1956)

    Article  Google Scholar 

  9. K. Kleinknecht, Detectors for particle radiation (Cambridge University Press, Cambridge, 1986)

    Book  Google Scholar 

  10. N.P. Zaitseva, J. Newby, S. Hamel, L. Carman, M. Faust, V. Lordi, N.J. Cherepy, W. Stoeffl, S.A. Payne, Hard X-Ray Gamma-Ray Neutron Detect. Phys. XI 7449, 744911 (2009)

    Article  Google Scholar 

  11. L. Carman, N. Zaitseva, H.P. Martinez, B. Rupert, I. Pawelczak, A. Glenn, H. Mulcahy, R. Leif, K. Lewis, S. Payne, J. Cryst. Growth 368, 56 (2013)

    Article  CAS  Google Scholar 

  12. N. Zaitseva, A. Glenn, L. Carman, H. Paul Martinez, R. Hatarik, H. Klapper, S. Payne, Nucl. Instrum. Methods Phys. Res. A 789, 8 (2015)

    Article  CAS  Google Scholar 

  13. E.V. van Loef, J. Glodo, U. Shirwadkar, N. Zaitseva, K.S. Shah, IEEE Nucl. Sci. Symp. Conf. Rec. 1, 1007–1009 (2010)

    Google Scholar 

  14. M. De Gerone, M. Biasotti, V. Ceriale, D. Corsini, F. Gatti, A. Orlando, G. Pizzigoni, Nucl. Instrum. Methods Phys. Res. A 824, 192 (2016)

    Article  Google Scholar 

  15. A. Yamaji, S. Yamato, S. Kurosawa, M. Yoshino, S. Toyoda, K. Kamada, Y. Yokota, H. Sato, Y. Ohashi, A. Yoshikawa, IEEE Trans. Nucl. Sci. 67, 1027 (2020)

    Article  CAS  Google Scholar 

  16. T. Zhu, X. Liu, J. Qin, Q. Hu, J. Ning, Cryst. Growth Des. 19, 6855 (2019)

    Article  CAS  Google Scholar 

  17. V. Govindan, D.J. Daniel, P.Q. Vuong, K. Sankaranarayanan, H.J. Kim, J. Cryst. Growth 531, 125344 (2020)

    Article  CAS  Google Scholar 

  18. S. Selvakumar, K. Sivaji, N. Balamurugan, A. Arulchakkaravarthi, S. Sankar, C. Venkateswaran, P. Ramasamy, J. Cryst. Growth 275, e265 (2005)

    Article  CAS  Google Scholar 

  19. N. Durairaj, S. Kalainathan, J. Mater. Sci.: Mater. Electron. 29, 10480 (2018)

    CAS  Google Scholar 

  20. M.S. Kajamuhideen, K. Sethuraman, K. Ramamurthi, P. Ramasamy, J. Cryst. Growth 483, 16 (2018)

    Article  CAS  Google Scholar 

  21. I. Pritula, K. Sangwal, Handbook of crystal growth: bulk crystal growth, 2nd edn. (Elsevier, Amsterdam, 2015)

    Google Scholar 

  22. J. Harada, K. Ogawa, Struct. Chem. 12, 243 (2001)

    Article  CAS  Google Scholar 

  23. V. Govindan, D.J. Daniel, H.J. Kim, K. Sankaranarayanan, Dyes Pigm. 160, 848 (2019)

    Article  CAS  Google Scholar 

  24. G. Varsányi, L. Láng, Assignments for vibrational spectra of seven hundred benzene derivatives (Wiley, New York, 1974)

    Google Scholar 

  25. J. Mohan, Organic spectroscopy: principles and applications (New Age International (P) Limited Publishers, New Delhi, 2001)

    Google Scholar 

  26. M. Suresh, S.A. Bahadur, S. Athimoolam, J. Mol. Struct. 1112, 71 (2016)

    Article  CAS  Google Scholar 

  27. K. Senthil, S. Kalainathan, A. Ruban Kumar, P.G. Aravindan, RSC Adv. 4, 56112 (2014)

    Article  CAS  Google Scholar 

  28. T. Balakrishnan, S. Sathiskumar, K. Ramamurthi, S. Thamotharan, Mater. Chem. Phys. 186, 115 (2017)

    Article  CAS  Google Scholar 

  29. H.C. Wolf, Adv. Atom. Mol. Opt. Phys. 3, 119 (1968)

    Article  Google Scholar 

  30. N. Vijayan, G. Bhagavannarayana, K.K. Maurya, D. Haranath, B. Rathi, N. Balamurugan, Y.K. Sharma, P. Ramasamy, Mater. Chem. Phys. 132, 453 (2012)

    Article  CAS  Google Scholar 

  31. A. Sato, M. Koshimizu, Y. Fujimoto, S. Komatsuzaki, S. Kishimoto, K. Asai, Mater. Chem. Front. 6, 1470 (2022)

    Article  CAS  Google Scholar 

  32. C.P. Hsu, Acc. Chem. Res. 42, 509 (2009)

    Article  CAS  Google Scholar 

  33. D. Narayanan, S. Kalainathan, Mech. Mater. Sci. Eng. 220, 1 (2017)

    Article  Google Scholar 

  34. P. Harihar, H. Chen, W.J. Stapor, A.R. Knudson, Nucl. Instrum. Methods Phys. Res. A 336, 176 (1993)

    Article  CAS  Google Scholar 

  35. A. Arulchakkaravarthi, C.K. Lakshmanaperumal, P. Santhanaraghavan, P. Jayavel, R. Selvan, K. Sivaji, R. Gopalakrishnan, P. Ramasamy, Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 95, 236 (2002)

    Article  Google Scholar 

  36. N. Durairaj, S. Kalainathan, M.V. Krishnaiah, Mater. Chem. Phys. 181, 529 (2016)

    Article  CAS  Google Scholar 

  37. M.S. Kajamuhideen, K. Sethuraman, K. Ramamurthi, Appl. Phys. A Mater. Sci. Process. 124, 1 (2018)

    Article  CAS  Google Scholar 

  38. N. Vijayan, K. Nagarajan, A.M.Z. Slawin, C.K.S. Nair, G. Bhagavannarayana, Cryst. Growth Des. 7, 445 (2007)

    Article  CAS  Google Scholar 

  39. K.S. Ramesh, M. Saravanabhavan, M. Rajkumar, D. Edison, M. Sekar, S. Muhammad, A.G. Al-Sehemi, Opt. Mater. (Amst) 96, 109341 (2019)

    Article  Google Scholar 

  40. J.J. McKinnon, M.A. Spackman, A.S. Mitchell, Acta Crystallogr. B 60, 627 (2004)

    Article  Google Scholar 

  41. M. Murugesan, R. Paulraj, M. Tyagi, R. Perumalsamy, J. Mater. Sci.: Mater. Electron. 32, 15200 (2021)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge DAE-BRNS, Mumbai (Sanction Number: 37(2)/14/24/2018-BRNS), for providing financial support to carry out the research work.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

RHR contributed to conceptualization, methodology, investigation, formal analysis, writing—original draft, and writing—review & editing. MSK contributed to methodology, validation, writing—original draft, and writing—review & editing. BT contributed to supervision, conceptualization, validation, funding acquisition, and writing—review & editing. KS contributed to supervision, conceptualization, methodology, resources, funding acquisition, validation, and writing—review & editing.

Corresponding author

Correspondence to K. Sethuraman.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Ethical approval

This article does not contain any studies involving human participants performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramprasath, R.H., Kajamuhideen, M.S., Tiwari, B. et al. Growth, structural, optical, and thermal behavior of bibenzyl organic single crystal for scintillator applications. J Mater Sci: Mater Electron 34, 620 (2023). https://doi.org/10.1007/s10854-023-10013-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10013-9

Navigation