Skip to main content
Log in

Decreased uncoordinated Pb2+ defects induced by Lewis base for high-quality PSCs with much improved carrier transportation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Perovskite solar cells (PSCs) have received extensive attention due to their excellent photovoltaic properties. However, existence of defects, such as Pb2+ and I vacancies, restricts its further improvement of power conversion efficiency (PCE) and affects the stability of PSCs devices. In this study, glycine methyl ester hydrochloride (GMEH) was introduced as interface modification material. As Lewis base, GMEH formed a chemical bonding of Pb–O with perovskite to decrease uncoordinated Pb2+ defects, thus transfer of charge carriers was obviously facilitated, indicating that status of Pb2+ in perovskite structure is one of key factors for carrier transportation. Meanwhile, amino group in GMEH combined with iodide to form hydrogen bond, thereby stabilized perovskite structure and decreased ion migration. Eventually, a champion efficiency of 21.94% was obtained with promoted short-circuit current (JSC) and fill factor (FF). Meanwhile, the stability of PSCs was significantly improved. The modified PSCs can maintain 90% of the initial efficiency after storing in a nitrogen filled glove box for 1700 h, while the control one can only maintain 55%. And the stability of the modified device in humid air was also greatly improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that supports the findings of this study are available in the supplementary material of this article.

References

  1. NREL Best Research Cells Efficiencies. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-rev220126.pdf (accessed January).

  2. J.M. Ball, A. Petrozza, Defects in perovskite-halides and their effects in solar cells. Nat. Energy (2016). https://doi.org/10.1038/nenergy.2016.149

    Article  Google Scholar 

  3. X. Yang, Y. Ni, Y. Zhang, Y. Wang, W. Yang, D. Luo, Y. Tu, Q. Gong, H. Yu, R. Zhu, Multiple-defect management for efficient perovskite photovoltaics. ACS Energy Lett. 6(7), 2404–2412 (2021)

    Article  CAS  Google Scholar 

  4. J. Xie, P. Hang, H. Wang, S. Zhao, G. Li, Y. Fang, F. Liu, X. Guo, H. Zhu, X. Lu, X. Yu, C.C.S. Chan, K.S. Wong, D. Yang, J. Xu, K. Yan, Perovskite bifunctional device with improved electroluminescent and photovoltaic performance through interfacial energy-band engineering. Adv. Mater. 31(33), 1902543 (2019)

    Article  Google Scholar 

  5. S. Wang, T. Sakurai, W. Wen, Y. Qi, Energy level alignment at interfaces in metal halide perovskite solar cells. Adv. Mater. Interfaces 5(22), 1800260 (2018)

    Article  Google Scholar 

  6. B. Li, X. Wu, H. Zhang, S. Zhang, Z. Li, D. Gao, C. Zhang, M. Chen, S. Xiao, A.K.Y. Jen, S. Yang, Z. Zhu, Efficient and stable tin perovskite solar cells by pyridine-functionalized fullerene with reduced interfacial energy loss. Adv. Funct. Mater. 32, 2205870 (2022)

    Article  CAS  Google Scholar 

  7. A. Alagumalai, M. Venu Rajendran, S. Ganesan, V. Sudhakaran Menon, R.K. Raman, S.M. Chelli, S. Muthukumar Vijayasayee, S.A. Gurusamy Thangavelu, A. Krishnamoorthy, Interface modification with holistically designed push-pull D–π–A organic small molecule facilitates band alignment engineering, efficient defect passivation, and enhanced hydrophobicity in mixed cation planar perovskite solar cells. ACS Appl. Energy Mater. 5(6), 6783–6796 (2022)

    Article  CAS  Google Scholar 

  8. R. Wang, T.-G. Sun, T. Wu, Z. Zhu, J.-Y. Shao, Y.-W. Zhong, Y. Hua, Hydrophobic π-conjugated organic small molecule as a multi-functional interface material enables efficient and stable perovskite solar cells. Chem. Eng. J. 430, 133065 (2022)

    Article  CAS  Google Scholar 

  9. X. Gong, H. Li, X. Liu, D. Zhao, H. Wang, Y. Ni, Y. Lei, Y. Tang, S. Liu, Enhanced hole mobility and decreased ion migration originated from interface engineering for high quality PSCs with average FF beyond 80. Small Methods 6(6), e2200260 (2022)

    Article  Google Scholar 

  10. X. Gong, H. Li, R. Zhou, X. Peng, Y. Ouyang, H. Luo, X. Liu, J. Zhuang, H. Wang, Y. Ni, Y. Lei, Strong electron acceptor of a fluorine-containing group leads to high performance of perovskite solar cells. ACS Appl. Mater. Interfaces 13(34), 41149–41158 (2021)

    Article  CAS  Google Scholar 

  11. Y. Ni, H. Li, H. Li, J. Zhuang, X. Liu, R. Zheng, S. Zhao, H. Zhang, H. Wang, Strong connection between PVK and ETL induced by an anti-allergic agent interface for high-quality PSCs. J. Mater. Sci. 33(9), 6456–6468 (2022)

    CAS  Google Scholar 

  12. R. Zhou, X. Liu, H. Li, H. Wang, Y. Ouyang, X. Gong, X. Peng, H. Luo, Y. Ni, W. Zou, Y. Lei, Sulfonyl and carbonyl groups in MSTC effectively improve the performance and stability of perovskite solar cells. Solar RRL 6(1), 2100731 (2021)

    Article  Google Scholar 

  13. X. Peng, S. Zhao, R. Zhou, X. Gong, H. Luo, Y. Ouyang, X. Liu, H. Li, H. Wang, J. Zhuang, A versatile organic salt modified SnO2 electron transport layer for high-performance perovskite solar cells. Adv. Mater. Interfaces 8(16), 582 (2021)

    Article  Google Scholar 

  14. B. Chen, P.N. Rudd, S. Yang, Y. Yuan, J. Huang, Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 48(14), 3842–3867 (2019)

    Article  CAS  Google Scholar 

  15. L. Gu, S. Wang, Y. Chen, Y. Xu, R. Li, D. Liu, X. Fang, X. Jia, N. Yuan, J. Ding, Stable high-performance perovskite solar cells via passivation of the grain boundary and interface. ACS Appl. Energy Mater. 4(7), 6883–6891 (2021)

    Article  CAS  Google Scholar 

  16. Y. Yin, Z. Guo, G. Chen, H. Zhang, W.-J. Yin, Recent progress in defect tolerance and defect passivation in halide perovskite solar cells. Acta Physico Chim. Sin. 37, 3866 (2020)

    Google Scholar 

  17. D.A. Kara, D. Cirak, B. Gultekin, Decreased surface defects and non-radiative recombination via the passivation of the halide perovskite film by 2-thiophenecarboxylic acid in triple-cation perovskite solar cells. Phys. Chem. Chem. Phys. 24(17), 10384–10393 (2022)

    Article  CAS  Google Scholar 

  18. C. Shi, Q. Song, H. Wang, S. Ma, C. Wang, X. Zhang, J. Dou, T. Song, P. Chen, H. Zhou, Y. Chen, C. Zhu, Y. Bai, Q. Chen, Molecular hinges stabilize formamidinium-based perovskite solar cells with compressive strain. Adv. Funct. Mater. 32(28), 2201193 (2022)

    Article  CAS  Google Scholar 

  19. S. Zhao, M. Qin, H. Wang, J. Xie, F. Xie, J. Chen, X. Lu, K. Yan, J. Xu, Cascade type-II 2D/3D perovskite heterojunctions for enhanced stability and photovoltaic efficiency. Solar RRL 4(10), 282 (2020)

    Article  Google Scholar 

  20. S. Wang, H. Guo, J. Wu, Y. Lei, X. Li, Y. Fang, Y. Dai, W. Xiang, Y. Lin, High-conductivity thiocyanate ionic liquid interface engineering for efficient and stable perovskite solar cells. Chem. Commun. (Camb) 58(60), 8384–8387 (2022)

    Article  CAS  Google Scholar 

  21. Z. Wu, M. Jiang, Z. Liu, A. Jamshaid, L.K. Ono, Y. Qi, Highly efficient perovskite solar cells enabled by multiple ligand passivation. Adv. Energy Mater. 10(10), 1903696 (2020)

    Article  CAS  Google Scholar 

  22. C. Ji, C. Liang, H. Zhang, M. Sun, Q. Song, F. Sun, X. Feng, N. Liu, H. Gong, D. Li, F. You, Z. He, Secondary Grain growth in organic-inorganic perovskite films with ethylamine hydrochloride additives for highly efficient solar cells. ACS Appl. Mater. Interfaces 12(17), 20026–20034 (2020)

    Article  CAS  Google Scholar 

  23. Y. Cui, C. Chen, C. Li, L. Chen, S.S. Bista, X. Liu, Y. Li, R.A. Awni, Z. Song, Y. Yan, Correlating hysteresis and stability with organic cation composition in the two-step solution-processed perovskite solar cells. ACS Appl. Mater. Interfaces 12(9), 10588–10596 (2020)

    Article  CAS  Google Scholar 

  24. M. Wang, L. Fan, W. Lu, Q. Sun, X. Wang, F. Wang, J. Yang, H. Liu, L. Yang, Interior/Interface modification of textured perovskite for enhanced photovoltaic outputs of planar solar cells by an in situ growth passivation technology. ACS Appl. Mater. Interfaces 13(33), 39689–39700 (2021)

    Article  CAS  Google Scholar 

  25. Y. Yun, F. Wang, H. Huang, Y. Fang, S. Liu, W. Huang, Z. Cheng, Y. Liu, Y. Cao, M. Gao, L. Zhu, L. Wang, T. Qin, W. Huang, A nontoxic bifunctional (anti)solvent as digestive-ripening agent for high-performance perovskite solar cells. Adv. Mater. 32(14), e1907123 (2020)

    Article  Google Scholar 

  26. D.G. Lee, D.H. Kim, J.M. Lee, B.J. Kim, J.Y. Kim, S.S. Shin, H.S. Jung, High efficiency perovskite solar cells exceeding 22% via a photo-assisted two-step sequential deposition. Adv. Funct. Mater. 31(9), 2006718 (2020)

    Article  Google Scholar 

  27. J. Xue, R. Wang, K.L. Wang, Z.K. Wang, I. Yavuz, Y. Wang, Y. Yang, X. Gao, T. Huang, S. Nuryyeva, J.W. Lee, Y. Duan, L.S. Liao, R. Kaner, Y. Yang, Crystalline liquid-like behavior: surface-induced secondary grain growth of photovoltaic perovskite thin film. J. Am. Chem. Soc. 141(35), 13948–13953 (2019)

    Article  CAS  Google Scholar 

  28. Y. Qi, J. Qu, J. Moore, K. Gollinger, N. Shrestha, Y. Zhao, N. Pradhan, J. Tang, Q. Dai, Perovskite films passivated by poly[(R)-3-hydroxybutyric acid] for improved photovoltaic performance. Org. Electron. 104, 106487 (2022)

    Article  CAS  Google Scholar 

  29. N. Li, S. Tao, Y. Chen, X. Niu, C.K. Onwudinanti, C. Hu, Z. Qiu, Z. Xu, G. Zheng, L. Wang, Y. Zhang, L. Li, H. Liu, Y. Lun, J. Hong, X. Wang, Y. Liu, H. Xie, Y. Gao, Y. Bai, S. Yang, G. Brocks, Q. Chen, H. Zhou, Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat. Energy 4(5), 408–415 (2019)

    Article  CAS  Google Scholar 

  30. T.S. Sherkar, C. Momblona, L. Gil-Escrig, J. Avila, M. Sessolo, H.J. Bolink, L.J.A. Koster, Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions. ACS Energy Lett. 2(5), 1214–1222 (2017)

    Article  CAS  Google Scholar 

  31. D. Luo, R. Su, W. Zhang, Q. Gong, R. Zhu, Minimizing non-radiative recombination losses in perovskite solar cells. Nat. Rev. Mater. 5(1), 44–60 (2020)

    Article  CAS  Google Scholar 

  32. X. Yang, H. Yang, X. Hu, W. Li, Z. Fang, K. Zhang, R. Huang, J. Li, Z. Yang, Y. Song, Low-temperature interfacial engineering for flexible CsPbI2Br perovskite solar cells with high performance beyond 15%. J. Mater. Chem. A 8(10), 5308–5314 (2020)

    Article  CAS  Google Scholar 

  33. Q. Xue, Y. Bai, M. Liu, R. Xia, Z. Hu, Z. Chen, X.-F. Jiang, F. Huang, S. Yang, Y. Matsuo, H.-L. Yip, Y. Cao, Dual interfacial modifications enable high performance semitransparent perovskite solar cells with large open circuit voltage and fill factor. Adv. Energy Mater. 7(9), 1602333 (2017)

    Article  Google Scholar 

  34. T. Leijtens, S.D. Stranks, G.E. Eperon, R. Lindblad, E.M.J. Johansson, I.J. McPherson, H. Rensmo, J.M. Ball, M.M. Lee, H.J. Snaith, Electronic properties of meso-superstructured and planar organometal halide perovskite films: charge trapping, photodoping, and carrier mobility. ACS Nano 8(7), 7147–7155 (2014)

    Article  CAS  Google Scholar 

  35. G. Wu, J. Zhou, R. Meng, B. Xue, H. Zhou, Z. Tang, Y. Zhang, Air-stable formamidinium/methylammonium mixed lead iodide perovskite integral microcrystals with low trap density and high photo-responsivity. Phys. Chem. Chem. Phys. 21(6), 3106–3113 (2019)

    Article  CAS  Google Scholar 

  36. Q. Han, S.H. Bae, P. Sun, Y.T. Hsieh, Y.M. Yang, Y.S. Rim, H. Zhao, Q. Chen, W. Shi, G. Li, Y. Yang, Single crystal formamidinium lead iodide (FAPbI3): insight into the structural, optical, and electrical properties. Adv. Mater. 28(11), 2253–2258 (2016)

    Article  CAS  Google Scholar 

  37. H. Wang, Z. Zhang, J.V. Milić, L. Tan, Z. Wang, R. Chen, X. Jing, C. Yi, Y. Ding, Y. Li, Y. Zhao, X. Zhang, A. Hagfeldt, M. Grätzel, J. Luo, Water stable haloplumbate modulation for efficient and stable hybrid perovskite photovoltaics. Adv. Energy Mater. 11(25), 2101082 (2021)

    Article  CAS  Google Scholar 

  38. H. Wang, W. Zou, Y. Ouyang, X. Deng, H. Luo, J. Xu, X. Liu, H. Li, X. Gong, Y. Lei, Y. Ni, Y. Peng, Consolidating a Pb–X framework via multifunctional passivation with fluorinated zwitterions for efficient and stable perovskite solar cells. J. Mater. Chem. A 10(19), 10750–10758 (2022)

    Article  CAS  Google Scholar 

  39. A. Musiienko, P. Moravec, R. Grill, P. Praus, I. Vasylchenko, J. Pekarek, J. Tisdale, K. Ridzonova, E. Belas, L. Landová, B. Hu, E. Lukosi, M. Ahmadi, Deep levels, charge transport and mixed conductivity in organometallic halide perovskites. Energy Environ. Sci. 12(4), 1413–1425 (2019)

    Article  CAS  Google Scholar 

  40. X. Gong, H. Li, X. Liu, H. Wang, Y. Ni, Y. Lei, R. Zhou, W. Zou, Y. Tang, S. Liu, High moisture stability for enhanced quality PSCs induced by front and back layer synergistic passivation of perovskite. Solar RRL 6, 2200487 (2022)

    Article  CAS  Google Scholar 

  41. H. Li, Q. Wang, H. Li, J. Zhuang, H. Guo, X. Liu, H. Wang, R. Zheng, X. Gong, Interface modification for enhanced efficiency and stability perovskite solar cells. J. Phys. Chem. C 124(24), 12948–12955 (2020)

    Article  CAS  Google Scholar 

  42. T. Zhou, H. Lai, T. Liu, D. Lu, X. Wan, X. Zhang, Y. Liu, Y. Chen, Highly efficient and stable solar cells based on crystalline oriented 2D/3D hybrid perovskite. Adv. Mater. 31(32), e1901242 (2019)

    Article  Google Scholar 

  43. X. Zhang, C. Sun, Y. Zhang, H. Wu, C. Ji, Y. Chuai, P. Wang, S. Wen, C. Zhang, W.W. Yu, Bright perovskite nanocrystal films for efficient light-emitting devices. J. Phys. Chem. Lett. 7(22), 4602–4610 (2016)

    Article  CAS  Google Scholar 

  44. Q. Wang, H. Li, J. Zhuang, H. Guo, X. Liu, Z. Guo, X. Gong, H. Li, Multifunctional molecules of surfactant to support enhanced efficiency and stability for perovskite solar cells. J. Mater. Sci. 55(30), 14761–14772 (2020)

    Article  CAS  Google Scholar 

  45. C. Mader, J. Müller, S. Eidelloth, R. Brendel, Local rear contacts to silicon solar cells by in-line high-rate evaporation of aluminum. Sol. Energy Mater. Sol. Cells 107, 272–282 (2012)

    Article  CAS  Google Scholar 

  46. L. Liang, H. Luo, J. Hu, H. Li, P. Gao, Efficient perovskite solar cells by reducing interface-mediated recombination: a bulky amine approach. Adv. Energy Mater. 10(14), 2000197 (2020)

    Article  CAS  Google Scholar 

  47. D.D. Song, D. Wei, P. Cui, M.C. Li, Z.Q. Duan, T.Y. Wang, J. Ji, Y.Y. Li, J.M. Mbengue, Y.F. Li, Y. He, M. Trevor, N.G. Park, Dual function interfacial layer for highly efficient and stable lead halide perovskite solar cells. J. Mater. Chem. A 4(16), 6091–6097 (2016)

    Article  CAS  Google Scholar 

  48. R. Zhao, T. Wu, R. Zhuang, Y. Hua, Y. Wang, Unravel the charge-carrier dynamics in simple dimethyl oxalate treated perovskite solar cells with efficiency exceeding 22%. Energy Environ. Mater. (2022). https://doi.org/10.1002/eem2.12417

    Article  Google Scholar 

  49. Y. Luan, X. Yi, P. Mao, Y. Wei, J. Zhuang, N. Chen, T. Lin, C. Li, J. Wang, High-performance planar perovskite solar cells with negligible hysteresis using 2,2,2-trifluoroethanol-incorporated SnO2. iScience 16, 433–441 (2019)

    Article  CAS  Google Scholar 

  50. J. Li, F. Gao, J. Wen, Z. Xu, C. Zhang, X. Hua, X. Cai, Y. Li, B. Shi, Y. Han, X. Ren, S. Liu, Effective surface passivation with 4-bromo-benzonitrile to enhance the performance of perovskite solar cells. J. Mater. Chem. C 9(47), 17089–17098 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from Application Foundation Project of Science and Technology of Sichuan Province (Grant No. 2021YJ0069), Youth Science and Technology Innovation Team Project of SWPU (Grant No. 2019CXTD04), and the Scientific Research Starting Project of SWPU (Grant No. 2019QHZ013), and the Young Scholars Development Fund of SWPU (Grant No. 201999010017).

Funding

Funding was provided by Application Foundation Project of Science and Technology of Sichuan Province (Grant No. 2021YJ0069), Youth Science and Technology Innovation Team Project of SWPU (Grant Nos. 2019CXTD04, 2019QHZ013) and Young Scholars Development Fund of SWPU (Grant No. 201999010017).

Author information

Authors and Affiliations

Authors

Contributions

YN: experimental design, device fabrication and characterization, data analysis, and finalizing manuscript. HL: conceptualization, supervision, reviewing manuscript and resources. ML: resources. XL: methodology, data analysis. HW: supervision, data analysis. YL: data analysis. SL: data analysis. YT: data analysis.

Corresponding author

Correspondence to Haimin Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4224 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, Y., Li, H., Li, M. et al. Decreased uncoordinated Pb2+ defects induced by Lewis base for high-quality PSCs with much improved carrier transportation. J Mater Sci: Mater Electron 34, 553 (2023). https://doi.org/10.1007/s10854-023-10004-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10004-w

Navigation