Skip to main content
Log in

Enhancement of thermoelectric power factor in nanostructured cadmium oxide via zinc doping for high-temperature thermoelectric applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Thermoelectrics is a technology that enables the direct transformation of waste heat into electricity. This can fulfill the world’s increasing demand for energy. This article presents the effect of Zinc dopant on the thermoelectric properties of nanostructured Cadmium Oxide for the first time. Pure nanostructured Cadmium Oxide and Zinc-doped Cadmium Oxide with 2, 4, 6, and 8% Zinc concentrations were synthesized chemically by the Precipitation method. The X-ray diffraction technique was used to investigate the structural properties. Rietveld Refinement confirmed that the prepared Cadmium Oxide has Face-Centered Cubic structure with Fm \(\overline{3}\) m space group. FESEM micrographs revealed that nanostructured Cadmium Oxide has circular plate-like morphology. Energy-Dispersive X-ray spectroscopy confirmed the presence of Cadmium, Zinc, and Oxygen. The fundamental vibrational bands of the prepared samples were studied by Raman spectroscopy. The carrier concentration (n) and Hall mobility (μ) measurement at room temperature show the n-type behavior of all the samples. The variation of electrical resistivity (ρ) and Seebeck coefficient (S) were investigated in the temperature range of 300–950 K. The highest Seebeck coefficient of −186 μ V/K was attained for pure CdO at 950 K. The lowest electrical resistivity of 1.72 μΩm was obtained for 8% Zinc-doped CdO. The 4% Zinc-doped CdO attained a maximum thermoelectric power factor of 3.68 × 10−3 Wm−1 K−2 at 950 K which is 1.7 times higher than that of pure CdO. This increment in the thermoelectric power factor shows that Zinc is a suitable dopant for Cadmium Oxide to enhance its thermoelectric performance. These results demonstrate that Zinc-doped Cadmium Oxide is a potential n-type thermoelectric material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. G.J. Synder, E.S. Toberer, Nature Mater. 7, 105–114 (2008)

    Article  Google Scholar 

  2. X.F. Zheng, C.X. Liu, Y.Y. Yan, Q. Wang, Renew. & Sus. Ener. Rev. 32, 486–503 (2014)

    Article  CAS  Google Scholar 

  3. D. Enescu, E.O. Virjoghe, Renew. & Sus. Ener. Rev. 38, 903–916 (2014)

    Article  Google Scholar 

  4. M. Hagencamp, T. Blanke, B. Doring, Int. J. Enr. & Env. Eng. 13, 241–254 (2022)

    Article  Google Scholar 

  5. J.F. Li, W.S., Liu, L-D. Zhao, M. Zhou, NPG Asia Mater. 2(4), 152–158 (2010)

    Article  Google Scholar 

  6. J.R. Szczech, J.M. Higggins, S. Jin, J. Mater. Chem. 21, 4037–4055 (2011)

    Article  CAS  Google Scholar 

  7. L. Han, N.V. Nong, W. Zhang, L.T. Hung, T. Holgate, K. Tashiro, M. Ohtaki, N. Pryds, S. Linderoth, RSC Adv. 4, 12353–12361 (2014)

    Article  CAS  Google Scholar 

  8. R.V.R. Virtudazo, B. Srinivasan, Q. Guo, R. Wu, T. Takei, Y. Shimasaki, H. Wada, K. Kuroda, S. Bernik, T. Mori, Inorg. Chem. Front. 7, 4118–4132 (2020)

    Article  CAS  Google Scholar 

  9. T.M.V. Muruguthiruvalluvan, A.S.A. Nedunchezhian, V. Natarazan, R. Chandramohan, M. Azhagurajan, P. Anandan, M. Arivanandhan, Sol. St. Sci. 91, 133–137 (2019)

    Article  CAS  Google Scholar 

  10. C.J. Vineis, A. Shakouri, A. Majumdar, M.G. Kanatzidis, Adv. Mater. 22, 3970–3980 (2010)

    Article  CAS  Google Scholar 

  11. W. Liu, J. Hu, S. Zhang, M. Deng, C.G. Han, Y. Liu, Mater. Tod. Phy. 1, 50–60 (2017)

    Article  Google Scholar 

  12. T. Mori, Small 13, 1702013 (2017)

    Article  Google Scholar 

  13. J. Mao, Z. Liu, J. Zhou, H. Zhu, Q. Zhang, G. Chen, Z. Ren, Adv. Phy. 67(2), 69–147 (2018)

    Article  Google Scholar 

  14. C. Yu, X. Zhang, M. Leng, A. Shaga, D. Liu, F. Chen, C. Wang, J. All. & Comp. 570, 86–93 (2013)

    Article  CAS  Google Scholar 

  15. P. Anandan, M. Omprakash, M. Azhagurajan, M. Arivanandhan, D.R. Babu, T. Koyama, Y. Hayakawa, CrystEngComm 16, 7956–7962 (2014)

    Article  CAS  Google Scholar 

  16. J.R. Sootsman, D.Y. Chung, M.G. Kanatzidis, Angew. Chem. Int. Ed. 48, 8616–8639 (2009)

    Article  CAS  Google Scholar 

  17. K. Koumoto, Y. Wang, R. Zhang, A. Kosuga, A. Funahashi, Annu. Rev. Mater. Res. 40, 363–394 (2010)

    Article  CAS  Google Scholar 

  18. P. Jood, R.J. Mehta, Y. Zhang, T.B. Tasciuc, S.X. Dou, D.J. Singh, G. Ramanath, RSC Adv. 4, 6363–6368 (2014)

    Article  CAS  Google Scholar 

  19. M. Ohtaki, K. Araki, K. Yamamoto, J. Elec. Mater. 38(7), 1234–1238 (2009)

    Article  CAS  Google Scholar 

  20. S. Yanagiya, N.V. Nong, M. Sonne, M. Pryds, A.I.P. Conf, Proc. 1449, 327–330 (2012)

    CAS  Google Scholar 

  21. Y. Liu, W. Xu, D.B. Liu, M. Yu, Y.H. Lin, C.W. Nan, Phys. Chem. Chem. Phys. 17, 11229–11233 (2015)

    Article  CAS  Google Scholar 

  22. K. Shanmugapriya, B. Palanivel, R. Murugan, Cur. Sma. Mater. 2, 73–79 (2017)

    Google Scholar 

  23. M. Lee, L. Viciu, L. Li, Y. Wang, M.L. Foo, S. Watauchi, R.A. Pascal, R.J. Cava, N.P. Ong, Nature Mater. 5, 537–540 (2006)

    Article  CAS  Google Scholar 

  24. S.O.A. Torres, D. Thomazini, G.P. Balthazar, M.V. Gelfuso, Mater. Res. (2020). https://doi.org/10.1590/1980-5373-mr-2020-0169

    Article  Google Scholar 

  25. H. Ohta, K. Sugiura, K. Koumoto, Inorg. Chem. 47, 8429–8436 (2008)

    Article  CAS  Google Scholar 

  26. N.Y. Devi, K. Vijayakumar, P. Rajasekaran, A.S.A. Nedunchezhian, D. Sidharth, S. Masaru, M. Arivanandhan, R. Jayavel, Ceram. Int. (2020)

  27. Y. Feng, X. Jiang, E. Ghafari, B. Kucukgok, C. Zhang, I. Ferguson, N. Lu, Adv. Comp. Hyb. Mater. 1, 114–126 (2018)

    Article  CAS  Google Scholar 

  28. J. Jacob, U. Rehman, K. Mehmood, A. Ali, K. Mehboob, A. Ashfaq, S. Ikram, N. Amin, S. Hussain, F. Ashraf, Cerm. Int. 46, 15013–15017 (2020)

    Article  CAS  Google Scholar 

  29. A. Thakur, P. Thakur, S.M. Paul Khurana, Springer Nature Singapore (2022) DOI: https://doi.org/10.1007/978-981-16-6819

  30. D. DurgaVijaykarthik, M. Kirithika, N. Prithivikumaran, N. Jeyakumaran, Int. J. Nano Dimens. 5(6), 557–562 (2014)

    Google Scholar 

  31. K. Giribabu, R. Suresh, L. Vijayalakshmi, A. Stephen, V. Narayanan, Adv. Mater. Res. 678, 369–372 (2013)

    Article  CAS  Google Scholar 

  32. A. Mukasia, G.S. Manyali, H. Barasa, J. Sifuna, J. Mater. Sci. Res. Rev. 2(1), 1–7 (2019)

    Google Scholar 

  33. S. Wang, F. Liu, Q. Lu, S. Dai, J. Wang, W. Yu, G. Fu, J. Eur. Cerm. Soc. 33, 1763–1768 (2013)

    Article  CAS  Google Scholar 

  34. S. Wang, Q. Lu, L. Li, G. Fu, F. Liu, S. Dai, W. Yu, J. Wang, Scr. Mater. 69, 533–536 (2013)

    Article  CAS  Google Scholar 

  35. X. Zhang, H. Li, J. Wang, J. Adv. Cerm. 4(3), 226–231 (2015)

    Article  Google Scholar 

  36. L. Gao, S. Wang, R. Liu, X. Zha, N. Sun, S. Wang, J. Wang, G. Fu, RSC 45(30), 12215–12220 (2016)

    CAS  Google Scholar 

  37. Y. Li, G. Wang, M. Akbari-Saatlu, M. Procek, H.H. Radamson, Front. Mater. 8, 611078 (2021)

    Article  Google Scholar 

  38. R. Santhi, C. Shanthi, M. Sathya, K. Pushpanathan, J. Chem. Phar. Res. 8(9), 249–259 (2016)

    CAS  Google Scholar 

  39. M. Kavakebi, F.J. Sheini, Trans. Nonferrous Met. Soc. China 28, 2255–2264 (2018)

    Article  CAS  Google Scholar 

  40. V. Eskizeybek, O. Demir, A. Avci, M. Chhowalla, J. Nanopart. Res. 13, 4673–4680 (2011)

    Article  CAS  Google Scholar 

  41. R. Madan, V. Kumar, D. Mohan, Mater. Tod. Proc. 54(3), 664–668 (2022)

    Article  CAS  Google Scholar 

  42. P. Scherrer, Nachr. Ges. Wiss. Göttingen 26, 98–100 (1918)

    Google Scholar 

  43. J.I. Langford, A.J.C. Wilson, J. Appl. Cryst. 11, 102–113 (1978)

    Article  CAS  Google Scholar 

  44. V. Uvarov, I. Popov, Mater. Charac. 85, 111–123 (2013)

    Article  CAS  Google Scholar 

  45. A.T. Ravichandran, A.R. Xavier, K. Pushpanathan, B.M. Nagabhushana, R. Chandramohan, J. Mater. Sci: Mater Electron 27, 693–2700 (2016)

    Google Scholar 

  46. S. Kumar, A.K. Ojha, AIP Adv. 3, 052109 (2013)

    Article  Google Scholar 

  47. H. Wang, W. Su, J. Liu, C. Wang, J. Materiomics 2(3), 225–236 (2016)

    Article  Google Scholar 

  48. O.C. Yelgel, G.P. Srivastava, J. App. Phy. 113, 073709 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The author R. Madan is thankful to University Grant Commission for the fellowship grant. Prof. D. Mohan is thankful to the Department of Science and Technology, India for providing the Fund for Improvement of S&T Infrastructure (FIST) grant for the establishment of common facilities.

Author information

Authors and Affiliations

Authors

Contributions

RM worked under the supervision of Prof. DM who helped me in editing and revising the manuscript. VK helped in the analysis of electrical measurement and characterization techniques, like XRD, FESEM, and Raman spectra.

Corresponding author

Correspondence to Rahul Madan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.

Ethical approval

The article does not contain any study involving any humans and animals performed by any author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madan, R., Mohan, D. & Kumari, V. Enhancement of thermoelectric power factor in nanostructured cadmium oxide via zinc doping for high-temperature thermoelectric applications. J Mater Sci: Mater Electron 34, 556 (2023). https://doi.org/10.1007/s10854-023-09988-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-09988-2

Navigation