Skip to main content
Log in

Structural, magnetic, and dielectric properties of Sr1 − xCaxFe12 − ySmyO19 (x = 0.00–0.20, y = 0.00–0.05) hexaferrite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Microstructural, magnetic, and dielectric properties of pure-phase Sr1 − xCaxFe12−ySmyO19 (x = 0.00–0.20, y = 0.00–0.05) hexaferrites prepared by auto-combustion of a sol–gel were investigated by several techniques, such as X-ray diffraction, field-emission electron microscopy, energy-dispersive X-ray spectroscopy, and vibrating sample magnetometer. Structural analysis indicated that Sr1 − xCaxFe12 − ySmyO19 has been indexed in hexagonal structure with space group P63/mmc. Magnetic investigations showed that the Ca–Sm co-substitution could increase saturation magnetization and coercive field from 5069.8 Oe and 79.25 emu/g for pure sample to 5495.5 Oe and 83.09 emu/g, respectively. The structural and magnetic results suggest that that the Sm3+ ions occupy the 4f2 sites (spin down). The results of impedance analysis indicated that the decrease in the mobility of charge carriers in the samples with x,y = 0.08,0.02 that can be attributed to a larger number of defects commonly would block the movement of carriers. Overall, the Ca–Sm-co-substituted strontium hexaferrites could be a promising composition to enhance the coercive force with a slight increase in saturation magnetization of Sr hexaferrites which are likely to be useful in a series of practical applications, such as permanent magnets, microwave devices, and absorbers of electromagnetic radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Datasets (Raw or processed data files, Software, Code, Models, Algorithms, Protocols, Methods) are derived from public resources and made available with the article.

References

  1. M. Amini, A. Gholizadeh, Shape control and associated magnetic and dielectric properties of MFe12O19 (M = ba, Pb, Sr) hexaferrites. J. Phys. Chem. Solids 147, 109660 (2020)

    Article  CAS  Google Scholar 

  2. A.H. Najafabadi, A. Ghasemi, R. Mozaffarinia, Development of novel magnetic-dielectric ceramics for enhancement of reflection loss in X band. Ceram. Int 42(12), 13625–13634 (2016)

    Article  CAS  Google Scholar 

  3. Q. Li, Y. Chen, L. Li, K. Qian, V.G. Harris, Suppressed domain wall damping in planar BaM hexaferrites for miniaturization of microwave devices. J. Magn. Magn. Mater. 514, 167172 (2020)

    Article  CAS  Google Scholar 

  4. M. Saura-Múzquiz, A.Z. Eikeland, M. Stingaciu, H.L. Andersen, C. Granados-Miralles, M. Avdeev, V. Luzin, M. Christensen, Elucidating the relationship between nanoparticle morphology, nuclear/magnetic texture and magnetic performance of sintered SrFe12O19 magnets. Nanoscale 12, 9481–9494 (2020)

    Article  Google Scholar 

  5. R.C. Pullar, “Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics”. Prog. Mater. Sci 57, 1191–1334 (2012)

    Article  CAS  Google Scholar 

  6. M. Saura-Múzquiz, C. Granados-Miralles, H.L. Andersen, M. Stingaciu, M. Avdeev, M. Christensen, Nanoengineered high-performance hexaferrite magnets by morphology-induced alignment of tailored nanoplatelets. ACS Appl. Nano Mater. 1, 6938–6949 (2018)

    Article  Google Scholar 

  7. J. Moradi, M. Ghazi, M. Ehsani, P. Kameli, Structural and magnetic characterization of La0.8Sr0.2MnO3 nanoparticles prepared via a facile microwave-assisted method. J. Solid State Chem 215, 1–7 (2014)

    Article  CAS  Google Scholar 

  8. R. Irandoust, A. Gholizadeh, A comparative study of the effect of the non-magnetic and magnetic trivalent rare-earth ion substitutions on bismuth ferrite properties: correlation between the crystal structure and physical properties. Solid State Sci. 101, 106142 (2020)

    Article  CAS  Google Scholar 

  9. A. Gholizadeh, E. Jafari, Effects of sintering atmosphere and temperature on structural and magnetic properties of Ni–Cu–Zn ferrite nano-particles: magnetic enhancement by a reducing atmosphere. J. Magn. Magn. Mater. 422, 328–336 (2017)

    Article  CAS  Google Scholar 

  10. A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V.V. Korovushkin, V.A. Turchenko, P. Thakur, A. Thakur, Y. Yang, D.A. Vinnik, E.S. Yakovenko, L.Yu. Macuy, E.L. Trukhanova, S.V. Trukhanov, Control of electromagnetic properties in substituted M-type hexagonal ferrites. J. Alloys Compd 754, 247–256 (2018)

    Article  CAS  Google Scholar 

  11. S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishin, L.V. Panina, I.S. Kazakevich, V.A. Turchenko, V.V. Oleinik, E.S. Yakovenko, LYu. Matsui, Magnetic and absorbing properties of M-type substituted hexaferrites BaFe12–x GaxO19 (01 < x < 12). J. Exp. Theor. Phy. 123, 461–469 (2016)

    Article  CAS  Google Scholar 

  12. D.S. Klygach, M.G. Vakhitov, D.A. Vinnik, A.V. Bezborodov, S.A. Gudkova, V.E. Zhivulin, D.A. Zherebtsov, C.P. SakthiDharan, S.V. Trukhanov, A.V. Trukhanov, A.Yu. Starikov, Measurement of permittivity and permeability of barium hexaferrite. J. Magn. Magn. Mater 465, 290–294 (2018)

    Article  CAS  Google Scholar 

  13. E.M. Gerard, Electricity and magnetism (WJ McGraw Publishing Company, Bengaluru, 1897)

    Google Scholar 

  14. V.G. Harris, A. Geiler, Y. Chen, S.D. Yoon, M. Wu, A. Yang, Z. Chen, P. He, P.V. Parimi, X. Zuo, C.E. Patton, M. Abe, O. Acher, C. Vittoria, Recent advances in processing and applications of microwave ferrites. J. Magn. Magn. Mater 321(14), 2035–2047 (2009)

    Article  CAS  Google Scholar 

  15. A. Gholizadeh, A comparative study of physical properties in Fe3O4 nanoparticles prepared by coprecipitation and citrate methods. J. Am. Ceram. Soc. 100, 3577–3588 (2017)

    Article  CAS  Google Scholar 

  16. A.B. Ustinov, G. Srinivasan, Subterahertz excitations and magnetoelectric effects in hexaferrite-piezoelectric bilayers. Appl. Phys. Lett. 93(14), 142503 (2008)

    Article  Google Scholar 

  17. B.K. Kuanr, V. Veerakumar, R. Marson, S.R. Mishra, R. Camley, Z. Celinski, Nonreciprocal microwave devices based magnetism nanowires. Appl. Phys. Lett. 94(20), 202505 (2009)

    Article  Google Scholar 

  18. J.D. Adam, L.E. Davis, G.F. Dionne, E.F. Schloemann, S.N. Stitzer, Ferrite devices and materials. IEEE Trans. Microwave Theory Tech. 50(3), 721–737 (2002)

    Article  CAS  Google Scholar 

  19. K. Pardeep, P.A. Jha, P. Jha, R. Singh, Ranjan, R.K. Dwivedi, Sm/Ti co-substituted bismuth ferrite multi-ferroics: reciprocity between tetragonality and piezoelectricity. Phys. Chem. Chem. Phys. 19, 26285 (2017)

    Article  Google Scholar 

  20. S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, An.V. Trukhanov, E.L. Trukhanova, D.I. Tishkevich, V.M. Ivanov, T.I. Zubar, M. Salem, V.G. Kostishyn, L.V. Panina, D.A. Vinnik, S.A. Gudkov, Polarization origin and iron positions in indium doped barium hexaferrites. Ceram. Int 44, 290–300 (2018)

    Article  CAS  Google Scholar 

  21. C. de Julián Fernández, C. Sangregorio, J. de la Figuera, B. Belec, D. Makovec, A. Quesada, Progress and prospects of hard hexaferrites for permanent magnet applications. J. Phys. D: Appl. Phys. 54, 153001 (2021)

    Google Scholar 

  22. J. Singh, C. Singh, D. Kaur, H. Zaki, I. Abdel-Latif, S.B. Narang, R. Jotania, S.R. Mishra, R. Joshi, P. Dhruv, M. Ghimire, S.E. Shirsath’, S.S. Meena, Elucidation of phase evolution, microstructural, Mössbauer and magnetic properties of Co2+-Al3+ doped M-type Ba–Sr hexaferrites synthesized by a ceramic method. J. Alloys Compd. 695, 1112–1121 (2017)

    Article  CAS  Google Scholar 

  23. R. Joshi, C. Singh, D. Kaur, H. Zaki, S.B. Narang, R. Jotania, S.R. Mishra, J. Singh, P. Dhruv, M. Ghimire, Structural and magnetic properties of Co2+-W4+ ions doped M-type Ba–Sr hexaferrites synthesized by a ceramic method. J. Alloys Compd. 695, 909–914 (2017)

    Article  CAS  Google Scholar 

  24. F. Rhein, R. Karmazin, M. Krispin, T. Reimann, O. Gutfleisch, Enhancement of coercivity and saturation magnetization of Al3+ substituted M-type Sr-hexaferrites. J. Alloys Compd. 690, 979–985 (2017)

    Article  CAS  Google Scholar 

  25. D. Lisjak, M. Drofenik, The influence of the coprecipitation conditions on the low-temperature formation of barium hexaferrite. J. Mater. Sci 42(20), 8606–8612 (2007)

    Article  CAS  Google Scholar 

  26. M. Atif, S. Ullah, A.U. Rehman, K. Shahzad, W. Khalid, Z. Ali, Y. Chen, H. Guo, M. Nadeem, Structural, magnetic, and dielectric properties of Ti4+– M2+ co-doped BaFe11Ti0.5M0.5O19 hexaferrites (M = Co2+, Ni2+, Zn2+). Ceram. Int. 11, 15245–15252 (2021)

    Article  Google Scholar 

  27. A. Ghasemi, A. Morisako, Structural and electromagnetic characteristics of substituted strontium hexaferrite nanoparticles. J. Magn. Magn. Mater 320(6), 1167–1172 (2008)

    Article  CAS  Google Scholar 

  28. A. Hojjati Najafabadi, A. Ghasemi, R. Mozaffarinia, Synthesis and evaluation of microstructural and magnetic properties of Cr3+ substitution barium hexaferrite nanoparticles (BaFe10.5–xAl1.5CrxO19). J. Cluster Sci. 27, 965–978 (2016)

    Article  CAS  Google Scholar 

  29. C. Bohlender, M. Kahnes, R. Müller, J. Töpfer, Phase formation, magnetic properties, and phase stability in reducing atmosphere of M-type strontium hexaferrite nanoparticles synthesized via a modified citrate process. J. Mater. Sci. 54, 1136–1146 (2019)

    Article  CAS  Google Scholar 

  30. V. Banihashemi, M. Ghazi, M. Izadifard, Structural, optical, dielectric and magnetic properties of Ce-doped strontium hexaferrite synthesized by a hydrothermal process. J. Mater. Sci.: Mater. Electron. 30(18), 17374–17381 (2019)

    CAS  Google Scholar 

  31. G.D. Soria, P. Jenus, J. Marco, A. Mandziak, M. Sanchez-Arenillas, F. Moutinho, J.E. Prieto, P. Prieto, J. Cerdá, C.J.S.R. Tejera-Centeno, S. Gallego, M. Foerster, L. Aballe, M. Valvidares, H.B. Vasili, E. Pereiro, A. Quesada, J. de la Figuera, Strontium hexaferrite platelets: a comprehensive soft X-ray absorption and Mössbauer spectroscopy study. Sci. Rep. 9, 11777 (2019)

    Article  CAS  Google Scholar 

  32. A. Rozita Sefatgol, Gholizadeh, The effect of the annealing temperature on the microstructural, magnetic, and spin-dynamical properties of Mn–Mg–Cu–Zn ferrites. Phys. B 624, 413442 (2022)

    Article  Google Scholar 

  33. X.-T. Yin, J. Li, Q. Wang, D. Dastan, Z.-C. Shi, N. Alharbi, H. Garmestani, X.-M. Tan, Y. Liu, X.-G. Ma, Opposite sensing response of heterojunction gas sensors based on SnO2–Cr2O3 nanocomposites to H2 against CO and its selectivity mechanism. Langmuir 37, 13548–13558 (2021)

    Article  CAS  Google Scholar 

  34. H.R. Maryam Mojahed, A. Dizaji, Gholizadeh, Structural, magnetic, and dielectric properties of Ni/Zn co-substituted CuFe2O4 nanoparticles. Phys. B 646, 414337 (2022)

    Article  Google Scholar 

  35. S. Ajay, P.K. Bangwal, P.K. Jha, K. Dubey, Manish, A.S.K. Singh, V. Sinha Sathe, P.A. Jha, P. Singh, Porous and highly conducting cathode material PrBaCo2O6–δ: bulk and surface studies of synthesis anomalies. Phys. Chem. Chem. Phys. 21, 14701–14712 (2019)

    Article  Google Scholar 

  36. X.-T. Yin, H. Huang, J.-L. Xie, D. Dastan, J. Li, Y. Liu, X.-M. Tan, X.-C. Gao, W. Ali Shah, X.-G. Ma, High-performance visible-light active Sr-doped porous LaFeO3 semiconductor prepared via sol–gel method. Green Chem. Lett. Rev. 15, 546–556 (2022)

    Article  CAS  Google Scholar 

  37. U. Chandra, Recent applications in sol–gel synthesis (BoD–Books, Norderstedt, 2017)

    Book  Google Scholar 

  38. S. Chikazumi, C.D. Graham, Physics of ferromagnetism 2e (Oxford University Press, Oxford, 2009)

    Google Scholar 

  39. Z. MingliHan, W. Shi, K. Zhang, H. Zhang, D. Wang, R. DastanFan, Significantly enhanced high permittivity and negative permittivity in Ag/Al2O3/3D-BaTiO3/epoxy metacomposites with unique hierarchical heterogeneous microstructures. Compo: Part A 149, 106559 (2021)

    Google Scholar 

  40. I. Ali, M. Islam, M. Awan, M. Ahmad, M.A. Iqbal, Structural, electrical, and microstructure properties of nanostructured calcium doped Ba-hexaferrites synthesized by sol-gel method. J. Supercond. Novel Magnet. 26(11), 3277–3286 (2013)

    Article  CAS  Google Scholar 

  41. S. Kumar, S. Supriya, R. Pandey, L.K. Pradhan, R.K. Singh, M. Kar, Effect of lattice strain on structural and magnetic properties of ca substituted barium hexaferrite. J. Magn. Magn. Mater 458, 30–38 (2018)

    Article  CAS  Google Scholar 

  42. V. Banihashemi, M.E. Ghazi, M. Izadifard, R.E. Dinnebier, A study of Ca-doped hexaferrite Sr1-xCaxFe12O19 (x = 0.0, 0.05, 0.1, 0.15, and 0.2) synthesized by sol–gel combustion method. Physica Scripta 95, 095807 (2020)

    Article  CAS  Google Scholar 

  43. C. Cui, L. Xu, T. Xie, C. Liu, J. Yang, Structural and magnetic properties of Sm-doped strontium hexaferrite (SrFe12–xSmxO19) powders. Mater. Focus 3, 355–360 (2014)

    Article  CAS  Google Scholar 

  44. T. Xie, L. Xu, C. Liu, J. Yang, X. Zhang, M. Tian, C. Cui, Preparation and magnetic properties of Sm–Co doped strontium ferrite. Mater. Technol.: Adv. Perform. Mater. 33(7), 467–473 (2018)

    Article  CAS  Google Scholar 

  45. G.A. Ashraf, R.T. Rasool, M. Hassan, L. Zhang, Enhanced photo Fenton-like activity by effective and stable Al–Sm M-hexaferrite heterogenous catalyst magnetically detachable for methylene blue degradation. J. Alloys Compd. 821, 153410 (2020)

    Article  CAS  Google Scholar 

  46. S. Mahmoudi, A. Gholizadeh, Effect of non-magnetic ions substitution on the structure and magnetic properties of Y3 – xSrxFe5–xZrxO12 nanoparticles. J. Magn. Magn. Mater. 456, 46–55 (2018)

    Article  CAS  Google Scholar 

  47. L. Esmaili, A. Gholizadeh, The effect of nd and Zr co-substitution on structural, magnetic and photocatalytic properties of Bi1-xNdxFe1-xZrxO3 nanoparticles. Mater. Sci. Semiconduct. Process 118, 105179 (2020)

    Article  CAS  Google Scholar 

  48. P. Wang, H.J. Xiang, Room-temperature ferrimagnet with frustrated antiferroelectricity: promising candidate toward multiple-state memory. Phys. Rev. X 4, 011035 (2014)

    CAS  Google Scholar 

  49. C. Fang, F. Kools, R. Metselaar, R.A. De Groot, Magnetic and electronic properties of strontium hexaferrite SrFe12O19 from first-principles calculations. J. Phys.: Condensed Matter 15, 6229 (2003)

    CAS  Google Scholar 

  50. J.B. Marion, W.F. Hornyak, Principles of physics (Saunders College Publishing, Philadelphia, 1984)

    Google Scholar 

  51. M. Elansary, M. Belaiche, C.A. Ferdi, E. Iffer, I. Bsoul, New nanosized Gd–Ho–Sm doped M-type strontium hexaferrite for water treatment application: experimental and theoretical investigations. RSC Adv. 10, 25239–25259 (2020)

    Article  CAS  Google Scholar 

  52. Z. Adineh, A. Gholizadeh, Hydrothermal synthesis of Ce/Zr co-substituted BiFeO3: R3c-to-P4mm phase transition and enhanced room temperature ferromagnetism. J. Mater. Sci: Mater. Electron. 32, 26929–26943 (2021)

    CAS  Google Scholar 

  53. K.T. Selvi, M. Priya, Effect of Co and Sm substitutions on the magnetic interactions of M-type strontium hexaferrite nanoparticles. J. Supercond. Novel Magn. 33, 713–720 (2020)

    Article  Google Scholar 

  54. P. Bercoff, C. Herme, S.E. Jacobo, “The influence of Nd–Co substitution on the magnetic properties of non-stoichiometric strontium hexaferrite nanoparticles”. J. Magn. Magn. Mater. 321, 2245–2250 (2009)

    Article  CAS  Google Scholar 

  55. C. Tejera-Centeno, S. Gallego, J.I. Cerdá, An ab initio study of the magnetic properties of strontium hexaferrite. Sci. Rep. 11, 1–12 (2021)

    Article  Google Scholar 

  56. T.R. Wagner, Preparation and crystal structure analysis of magnetoplumbite-type BaGa12O19. J. Solid State Chem. 136(1), 120–124 (1998)

    Article  CAS  Google Scholar 

  57. N. Shamgani, A. Gholizadeh, Structural, magnetic and elastic properties of Mn0.3–xMgxCu0.2Zn0.5Fe3O4 nanoparticles. Ceram. Int. 45, 239–246 (2019)

    Article  CAS  Google Scholar 

  58. S. Xu, Y. Ma, G. Zheng, Z.X. Dai, Simultaneous effects of surface spins: rarely large coercivity, high remanence magnetization and jumps in the hysteresis loops observed in CoFe2O4 nanoparticles. Nanoscale 7, 6520–6526 (2015)

    Article  CAS  Google Scholar 

  59. M. Chithra, C. Anumol, B. Sahu, S.C. Sahoo, Exchange spring like magnetic behaviour in cobalt ferrite nanoparticles. J. Magn. Magn. Mater. 401, 1–8 (2016)

    Article  CAS  Google Scholar 

  60. H. Pfeiffer, W. Schüppel, Investigation of magnetic properties of barium ferrite powders by remanence curves. Phys. Status Solidi 119, 259–269 (1990)

    Article  CAS  Google Scholar 

  61. B. Abraime, M.A. Tamerd, A. Mahmoud, F. Boschini, A. Benyoussef, M. Hamedoun, Y. Xiao, A. El Kenz, O. Mounkachi, Experimental and theoretical investigation of SrFe12O19 nanopowder for permanent magnet application. Ceram. Int. 43, 15999–16006 (2017)

    Article  CAS  Google Scholar 

  62. M. Shezad, X. Liu, S. Feng, X. Kan, W. Wang, C. Liu, T.J. Shehzad, K.M.U. Rehman, Characterizations analysis of magneto-structural transitions in Ce–Co doped SrM based nano Sr1 – xCexFe12–xCoxO19 hexaferrite crystallites prepared by ceramic route. J. Magn. Magn. Mater. 497, 166013 (2020)

    Article  CAS  Google Scholar 

  63. A. Gholizadeh, A comparative study of the physical properties of Cu–Zn ferrites annealed under different atmospheres and temperatures: magnetic enhancement of Cu0.5Zn0.5Fe2O4 nanoparticles by a reducing atmosphere. J. Magn. Magn. Mater. 452, 389–397 (2018)

    Article  CAS  Google Scholar 

  64. K.-S. Moon, E.-S. Lim, Y.-M. Kang, Effect of ca and La substitution on the structure and magnetic properties of M-type Sr-hexaferrites. J. Alloys Compd 771, 350–355 (2019)

    Article  CAS  Google Scholar 

  65. A.K. Patra, Crystal structure, anisotropy and spin reorientation transition of highly coercive, epitaxial Pr–Co films (Cuvillier Verlag, Germany, 2008)

    Google Scholar 

  66. A. Gholizadeh, M. Beyranvand, Investigation on the structural, magnetic, dielectric and impedance analysis of Mg0.3–xBaxCu0.2Zn0.5Fe2O4 nanoparticles. Phys. B: Condensed Matter. 584, 412079 (2020)

    Article  CAS  Google Scholar 

  67. L.A. Trusov, E.A. Gorbachev, V.A. Lebedev, A.E. Sleptsova, I.V. Roslyakov, E.S. Kozlyakova, A.V. Vasiliev, R.E. Dinnebier, M. Jansen, P.E. Kazin, Ca–Al double-substituted strontium hexaferrites with giant coercivity. Chem. Commun. 54, 479–482 (2018)

    Article  CAS  Google Scholar 

  68. T. Jayakumar, C.R. Raja, S. Arumugam, Structural, magnetic and optical analysis of Pb2+-and Ce3+-doped strontium hexaferrite. J. Supercond. Novel Magn. 33, 2451–2458 (2020)

    Article  CAS  Google Scholar 

  69. S.K. Godara, M. Singh, V. Kaur, S. Narang, A.K. Sood, Effect of calcium solubility on structural, microstructural and magnetic properties of M-type barium hexaferrite. Ceram. Int 47, 20399–20406 (2021)

    Article  CAS  Google Scholar 

  70. M. Beyranvand, A. Zahedi, A. Gholizadeh, Cadmium substitution effect on microstructure and magnetic properties of Mg–Cu–Zn ferrites. Front. Mater. 8, 779837 (2022)

    Article  Google Scholar 

  71. M. Beyranvand, A. Gholizadeh, Structural, magnetic, elastic, and dielectric properties of Mn0. 3– xCdxCu0. 2Zn0. 5Fe2O4 nanoparticles. J. Mater. Sci.: Mater. Electron 31, 5124–5140 (2020)

    CAS  Google Scholar 

  72. M. Atif, M. Idrees, M. Nadeem, M. Siddiquec, M.W. Ashraf, Investigation on the structural, dielectric and impedance analysis of manganese substituted cobalt ferrite i.e., Co1 – xMnxFe2O4 (x = 0.0–0.4). RSC Adv 6(2016), 20876–20885 (2016)

    Article  CAS  Google Scholar 

  73. M.M. Mahmoud, A.S. Bhalla, N.P. Bansal, J. Singh, R.H. Castro, N.J. Manjooran, G. Pickrell, S. Johnson, G. Brennecka, G. Singh, Processing and properties of advanced ceramics and composites VII (Wiley, Hoboken, 2015)

    Book  Google Scholar 

  74. S. Iffat Ashraf, D. Ahmad, C. Dastan, H. Wang, Garmestani, M. Iqbal, Fabrication of ionic liquid based D-Ti3C2/MoO3 hybrid electrode system for efficient energy storage applications. Electrochim. Acta 429, 141036 (2022)

    Article  Google Scholar 

  75. A. Fatemeh Eghdami, Gholizadeh, A correlation between microstructural and impedance properties of MnFe2 – xCoxO4 nanoparticles. Phys. B 650, 414551 (2023)

    Article  Google Scholar 

Download references

Funding

The Financial Support of the Research Council of Damghan University with the Grant No. 688388 is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. AG and VB contributed to material preparation, data collection and analysis. AG wrote the first draft of the manuscript and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ahmad Gholizadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholizadeh, A., Banihashemi, V. Structural, magnetic, and dielectric properties of Sr1 − xCaxFe12 − ySmyO19 (x = 0.00–0.20, y = 0.00–0.05) hexaferrite. J Mater Sci: Mater Electron 34, 561 (2023). https://doi.org/10.1007/s10854-023-09983-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-09983-7

Navigation