Skip to main content

Advertisement

Log in

In situ preparation of nitrogen-doped carbon nanotubes on carbon cloth surface as binder-free flexible electrode materials for supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

It is very important to develop electrode materials with good mechanical flexibility and excellent electrochemical performance to adapt to the development of flexible electronic devices, and the preparation of non-binder flexible electrode is a good strategy. In this work, nitrogen-doped carbon nanotubes (N-CNT) were grown in situ on the surface of carbon cloth (CC) by a simple method and directly used as binder-free electrodes for supercapacitors. The electrochemical tests show that the electrode can achieve an areal capacitance of 4081.6 mF/cm2 when the ampere density is set at 2mA/cm2, and when the ampere density is promoted 10 times to 20mA/cm2, this electrode can still retain 72.8% of the areal capacitance at 2mA/cm2. The flexible electrode can also retain 90.3% of an areal capacitance after 5000 recharge/discharge cycles at a set ampere density of 10 mA/cm2 and 97.6% of its areal capacitance after 50 bending cycles. The electrode was assembled into a symmetrical supercapacitor for electrochemical performance testing, and an areal capacitance of 572.6 mF/cm2 can be maintained when the ampere density is set at 2 mA/cm2, and an energy density of 79.53 and 40.28 µWh/cm2 at a power density of 1000 and 10,000µW/cm2, separately. The excellent electrochemical performance is mainly attributed to the following three points: (1) No binder is used to avoid the problems that affect the conductivity and utilization rate of active substances caused by the binder. (2) The electrode material has a large specific surface area and has more active sites for electrochemical reaction. (3) The presence of N and O is of great help to improve the electrochemical performance of the electrode material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. K.L. Li, C.Q. Yin, X.J. Dai et al., Facile synthesis and incomplete sulfidation of nickel-cobalt-aluminum ternary layered hydroxide binder-free electrode with enhanced supercapacitor properties. J. Energy Storage. 55,105722(2022). https://doi.org/10.1016/j.est.2022.105722

    Article  Google Scholar 

  2. K.L. Li, Z.Y. Guo, Q. Sun et al., Phosphorus vacancy regulation and interfacial coupling of biotemplate derived CoP@FeP2 heterostructure to boost pseudocapacitive reaction kinetics. Chem. Eng. J. 454,140223(2023). https://doi.org/10.1016/j.cej.2022.140223

    Article  Google Scholar 

  3. K.L. Li, H. Teng, Q. Sun et al., Engineering active sites on nitrogen-doped carbon nanotubes/cobaltosic oxide heterostructure embedded in biotemplate for high-performance supercapacitors. J. Energy Storage 53, 105094 (2022)

    Article  Google Scholar 

  4. Y.M. Wang, X.L. Wu, Y.Q. Han et al., Flexible supercapacitor: overview and outlooks. J. Energy Storage (2021). https://doi.org/10.1016/j.est.2021.103053

    Article  Google Scholar 

  5. H.X. Jia, S. Lu, S.H. Ra Shin et al., In situ anodic electrodeposition of two-dimensional conductive metal-organic framework@nickel foam for high-performance flexible supercapacitor. J. Power Sources. (2022). https://doi.org/10.1016/j.jpowsour.2022.231163

    Article  Google Scholar 

  6. Y.Q. Han, L.M. Dai, Conducting polymers for flexible supercapacitors. Macromol. Chem. Phys (2019). https://doi.org/10.1002/macp.201800355

    Article  Google Scholar 

  7. P. Xie, W. Yuan, X.B. Liu et al., Advanced carbon nanomaterials for state-of-the-art flexible supercapacitors. Energy Storage Materials. 36, 56–76 (2021). https://doi.org/10.1016/j.ensm.2020.12.011

    Article  Google Scholar 

  8. J.L. Liu, Q. Wang, ,P. Liu, Redox electroactive group-modified carbon cloth as flexible electrode for high performance solid-state supercapacitors. Colloids Surf., A. 588(2020). https://doi.org/10.1016/j.colsurfa.2019.124388

  9. Q. Zhang, B.L. Sun, J. Sun et al., N-doped mesoporous carbon derived from electrodeposited polypyrrole on porous carbon cloth for high-performance flexibility supercapacitors. J. Electroanal. Chem 839, 39–47 (2019). https://doi.org/10.1016/j.jelechem.2019.03.018

    Article  CAS  Google Scholar 

  10. K. Song, H.F. Ni, L.Z. Fan, Flexible graphene-based composite films for supercapacitors with tunable areal capacitance. Electrochim. Acta 235, 233–241 (2017). https://doi.org/10.1016/j.electacta.2017.03.065

    Article  CAS  Google Scholar 

  11. D. Ye, Y. Yu, J. Tang et al., Electrochemical activation of carbon cloth in aqueous inorganic salt solution for superior capacitive performance. Nanoscale. 8(19), 10406–10414 (2016). https://doi.org/10.1039/C6NR00606J

    Article  CAS  Google Scholar 

  12. X. Han, Z.H. Huang, F.J. Meng et al., Redox-etching induced porous carbon cloth with pseudocapacitive oxygenic groups for flexible symmetric supercapacitor. J. Energy Chem. 64, 136–143 (2022). https://doi.org/10.1016/j.jechem.2021.04.035

    Article  CAS  Google Scholar 

  13. N. Q.Zhang, P. Wang, Zhao et al., Azide-assisted hydrothermal synthesis of N-doped mesoporous carbon cloth for high-performance symmetric supercapacitor employing LiClO4 as electrolyte. Compos. Part A: Appl. Sci. Manufac 98, 58–65 (2017). https://doi.org/10.1016/j.compositesa.2017.03.013

    Article  CAS  Google Scholar 

  14. Q.H. Wang, W.H. Ren, F. Gao et al., Thermally activated multilayered carbon cloth as flexible supercapacitor electrode material with significantly enhanced areal energy density. Chem. Electro. Chem 6(6), 1768–1775 (2019). https://doi.org/10.1002/celc.201801642

    Article  CAS  Google Scholar 

  15. X.Y. Xuan, M. Qian, L. Han et al., In-situ growth of hollow NiCo layered double hydroxide on carbon substrate for flexible supercapacitor. Electrochim. Acta. (2019). https://doi.org/10.1016/j.electacta.2019.134710

    Article  Google Scholar 

  16. J.X. Ma, J. Li, R. Guo et al., Direct growth of flake-like metal-organic framework on textile carbon cloth as high-performance supercapacitor electrode. J. Power Sources 428, 124–130 (2019). https://doi.org/10.1016/j.jpowsour.2019.04.101

    Article  CAS  Google Scholar 

  17. L. Shi, J.W. Ye, H. Lu et al., Flexible all-solid-state supercapacitors based on boron and nitrogen-doped carbon network anchored on carbon fiber cloth. Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2020.128365

    Article  Google Scholar 

  18. Y. He, S.S. Du, H.L. Li et al., MnO2/polyaniline hybrid nanostructures on carbon cloth for supercapacitor electrodes. J. Solid State Electrochem. 20(5), 1459–1467 (2016). https://doi.org/10.1007/s10008-016-3162-2

    Article  CAS  Google Scholar 

  19. L.G. Bulusheva, E.O. Fedorovskaya, A.G. Kurenya et al., Supercapacitor performance of nitrogen-doped carbon nanotube arrays. Phys. status solidi (b) 250(12), 2586–2591 (2013). https://doi.org/10.1002/pssb.201300108

    Article  CAS  Google Scholar 

  20. Y. Ding, Y.C. Li, Y.J. Dai et al., A novel approach for preparing in-situ nitrogen doped carbon via pyrolysis of bean pulp for supercapacitors. Energy (2021). https://doi.org/10.1016/j.energy.2020.119227

    Article  Google Scholar 

  21. F.S. Awan, M.A. Fakhar, L.A. Khan et al., Interfacial mechanical properties of carbon nanotube-deposited carbon fiber epoxy matrix hierarchical composites. Compos. Interfaces 25(8), 681–699 (2018). https://doi.org/10.1080/09276440.2018.1439620

    Article  CAS  Google Scholar 

  22. J. Cheon, M. Kim, Impact resistance and interlaminar shear strength enhancement of carbon fiber reinforced thermoplastic composites by introducing MWCNT-anchored carbon fiber. Compos. Part B: Eng. (2021). https://doi.org/10.1016/j.compositesb.2021.108872

    Article  Google Scholar 

  23. M.M. Ovhal, N. Kumar, S.-K. Hong et al., Asymmetric supercapacitor featuring carbon nanotubes and nickel hydroxide grown on carbon fabric: a study of self-discharging characteristics. J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.154447

    Article  Google Scholar 

  24. J.Y. Wang, F.X. Zhang, Z. Xu et al., Gallium oxynitride@carbon cloth with impressive electrochemical performance for supercapacitors. Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2021.128481

    Article  Google Scholar 

  25. X. Huang, Y.C. Ding, K.L. Li et al., Spontaneous formation of the conformal carbon nanolayer coated Si nanostructures as the stable anode for lithium-ion batteries from silica nanomaterials. J. Power Sources, 496,229833(2021). https://doi.org/10.1016/j.jpowsour.2021.229833

    Article  Google Scholar 

  26. A. Yanilmaz, A. Tomak, B.Akbali et al., Nitrogen doping for facile and effective modification of graphene surfaces. RSC Adv 7(45), 28383–28392 (2017). https://doi.org/10.1039/C7RA03046K

    Article  CAS  Google Scholar 

  27. M. Ayiania, M. Smith, A. Hensley et al., Deconvoluting the XPS spectra for nitrogen-doped chars: an analysis from first principles. Carbon. 162, 528–544 (2020). https://doi.org/10.1016/j.carbon.2020.02.065

    Article  CAS  Google Scholar 

  28. S. Sarkar, R. Akshaya, S. Ghosh, Nitrogen doped graphene/CuCr2O4 nanocomposites for supercapacitors application: effect of nitrogen doping on coulombic efficiency. Electrochim. Acta. (2020). https://doi.org/10.1016/j.electacta.2019.135368

    Article  Google Scholar 

  29. Z.J. Dou, Z.Y. Qin, J.Y. Shen et al., High–performance flexible supercapacitor based on carbon cloth through in–situ electrochemical exfoliation and re–deposition in neutral electrolyte. Carbon. 153, 617–624 (2019). https://doi.org/10.1016/j.carbon.2019.07.073

    Article  CAS  Google Scholar 

  30. M. Zhang, X. Jin, L.N. Wang et al., Improving biomass-derived carbon by activation with nitrogen and cobalt for supercapacitors and oxygen reduction reaction. Appl. Surf. Sci 411, 251–260 (2017). https://doi.org/10.1016/j.apsusc.2017.03.097

    Article  CAS  Google Scholar 

  31. H.M. Sun, Q. Wang, T. Wu et al., Plasma-assisted synthesis of pyrrolic-nitrogen doped reduced graphene oxide to enhance supercapacitor performance. Appl. Surf. Sci. (2020). https://doi.org/10.1016/j.apsusc.2020.146574

    Article  Google Scholar 

  32. S. Yan, J.J. Lin, P. Liu et al., Preparation of nitrogen-doped porous carbons for high-performance supercapacitor using biomass of waste lotus stems. RSC Adv. 8(13), 6806–6813 (2018). https://doi.org/10.1039/C7RA13013A

    Article  CAS  Google Scholar 

  33. L. Wan, W. Wei, M.J. Xie et al., Nitrogen, sulfur co-doped hierarchically porous carbon from rape pollen as high-performance supercapacitor electrode. Electrochim. Acta 311, 72–82 (2019). https://doi.org/10.1016/j.electacta.2019.04.106

    Article  CAS  Google Scholar 

  34. Y.B. Zhou, Z.C. Song, Q. Hu et al., Hierarchical nitrogen-doped porous carbon/carbon nanotube composites for high-performance supercapacitor. Superlattices  Microstruct 130, 50–60 (2019). https://doi.org/10.1016/j.spmi.2019.04.013

    Article  CAS  Google Scholar 

  35. Y.P. Chen, B.R. Liu, Q.Liu et al., Flexible all-solid-state asymmetric supercapacitor assembled using coaxial NiMoO4 nanowire arrays with chemically integrated conductive coating. Electrochim. Acta 178, 429–438 (2015). https://doi.org/10.1016/j.electacta.2015.08.040

    Article  CAS  Google Scholar 

  36. Y. Zhou, X.X. Wang, L. Acauan et al., Ultrahigh-areal-capacitance flexible supercapacitor electrodes enabled by conformal P3MT on horizontally aligned Carbon-Nanotube arrays. Adv. Mater 31(30), e1901916 (2019). https://doi.org/10.1002/adma.201901916

    Article  CAS  Google Scholar 

  37. Z.H. Huang, Y. Song, D.Y. Feng et al., High Mass Loading MnO2 with hierarchical nanostructures for supercapacitors. ACS Nano. 12(4), 3557–3567 (2018). https://doi.org/10.1021/acsnano.8b00621

    Article  CAS  Google Scholar 

  38. C. Sun, J. Zhao, Z. Guo et al., A Novel Method to Fabricate Nitrogen and Oxygen Co-Doped Flexible Cotton‐Based Electrode for Wearable Supercapacitors. ChemElectroChem. 6(15), 4049–4058 (2019). https://doi.org/10.1002/celc.201901123

    Article  CAS  Google Scholar 

  39. Z. Li, J. Ren, J.T. Bu et al., Carbonated MOF-based graphene hydrogel for hierarchical all–carbon supercapacitors with ultra-high areal and volumetric energy density. J. Electroanal. Chem. (2020). https://doi.org/10.1016/j.jelechem.2020.114489

    Article  Google Scholar 

  40. K.L. Li, S.H. Feng, C. Jing et al., Assembling a double shell on a diatomite skeleton ternary complex with conductive polypyrrole for the enhancement of supercapacitors. Chem. Commun. (Camb) 55(91), 13773–13776 (2019). https://doi.org/10.1039/C9CC06791D

    Article  CAS  Google Scholar 

  41. P. Sheng, R.R. Ye, D.J. Wu et al., Morphological modulation of cobalt selenide on carbon cloth by Ni doping for high-performance electrodes in supercapacitors. Colloids Surf., A. 624(2021). https://doi.org/10.1016/j.colsurfa.2021.126818

  42. C. Zhou, J. Liu, Carbon nanotube network film directly grown on carbon cloth for high-performance solid-state flexible supercapacitors. Nanotechnology. 25(3), 035402 (2014). https://doi.org/10.1088/0957-4484/25/3/035402

    Article  CAS  Google Scholar 

  43. W.W. Zhao, J.L. Peng, W.K. Wang et al., Interlayer hydrogen-bonded mMetal porphyrin frameworks/MXene hybrid film with high capacitance for flexible all-solid-state supercapacitors. Small 15(18), e1901351 (2019). https://doi.org/10.1002/smll.201901351

    Article  CAS  Google Scholar 

  44. Y.F. Gu, Y. Zhang, Y. Shi et al., 3D all printing of polypyrrole nanotubes for high mass loading flexible supercapacitor. ChemistrySelect 4(36), 10902–10906 (2019). https://doi.org/10.1002/slct.201902721

    Article  CAS  Google Scholar 

  45. D. Zhu, M.L. Yan, R.R. Chen et al., 3D Cu(OH)2 nanowires/carbon cloth for flexible supercapacitors with outstanding cycle stability. Chem. Eng. J. 371, 348–355 (2019). https://doi.org/10.1016/j.cej.2019.04.050

    Article  CAS  Google Scholar 

  46. C.J. Raj, R. Manikandan, W.-J. Cho et al., High-performance flexible and wearable planar supercapacitor of manganese dioxide nanoflowers on carbon fiber cloth. Ceram. Int. 46(13), 21736–21743 (2020). https://doi.org/10.1016/j.ceramint.2020.05.282

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52064035), the Key Research and Development Program of Gansu Province (21YF5GA078), and the Natural Science Foundation of Zhejiang Province (LGG22E020003).

Funding

Funding were provided by National Natural Science Foundation of China (Grant No. 52064035), Key Research and Development Program of Gansu Province (Grant No. 21YF5GA078) and Natural Science Foundation of Zhejiang Province (Grant No. LGG22E020003)

Author information

Authors and Affiliations

Authors

Contributions

FZ, YM and YZ guided all the experimental design and led the manuscript preparation and revision work. YX did most of the experiments, data analysis, and prepared the draft manuscript. MX, YC and XL conducted some experiments. All authors have approved the final version of the manuscript.

Corresponding authors

Correspondence to Yue Zhang or Fuliang Zhu.

Ethics declarations

Conflict of interest

All the authors do not have any possible conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Zhang, Y., Meng, Y. et al. In situ preparation of nitrogen-doped carbon nanotubes on carbon cloth surface as binder-free flexible electrode materials for supercapacitors. J Mater Sci: Mater Electron 34, 546 (2023). https://doi.org/10.1007/s10854-023-09976-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-09976-6

Navigation