Skip to main content
Log in

Understanding solvothermal reductive reactions of graphene oxide in boron and ammonia solutions

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Graphene has several favourable characteristics for both current and prospective applications. However, there are some economic issues emanating from the current methods of graphene synthesis and the need for high dispersibility in most potential applications. Reduced graphene oxide (RGO) is a suitable alternative that addresses these shortfalls. The synthesis of RGO via graphene oxide (GO) is leading to a quest for effective and ‘greener’ reduction protocols that simultaneously tune physicochemical properties for specific applications. Herein the study and comparison of the effects of electrophilic (empty orbitals on boron in boric anhydride) and nucleophilic (lone pairs on nitrogen in ammonia) solutions in solvothermal reduction of GO are presented. The study provides a better interpretation of the defect intensity, from Raman spectroscopy analysis, in relation to the conductivity of RGO. The highest increase in the C/O ratio from 2.48 (GO) to 11.36 (NRGO) suggests that ammonia displays the most reductive effect. Nucleophilic attack of carbon atoms within the oxygen functionalities of GO possibly enhanced reduction. Hydrothermal, and solvothermal reduction in electrophilic and nucleophilic solutions improved conductivity by two, three and five orders of magnitude relative to pristine GO, respectively. The sheet resistance, carrier concentration, and mobility of the superior NRGO were 93 Ω cm, 3.51 × 1018 cm−3 and 0.02 cm2 V−1 s−1, respectively. The solvent properties are dynamic in both the solvothermal reduction of GO and electronic property tailoring of RGO. The current work paves the way for future, cost-effective, facile reduction and doping protocols that tailor the physicochemical properties of graphene derivatives from the solvent nature. This is a practical economic approach that solves conductivity issues of GO whilst avoiding the use of toxic chemicals and high temperatures toward effective electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data and sample materials are available on request.

References

  1. R. Tarcan, M. Handrea-Dragan, O. Todor-Boer, I. Petrovai, C. Farcau, M. Rusu, A. Vulpoi, M. Todea, S. Astilean, I. Botiz, A new, fast and facile synthesis method for reduced graphene oxide in N. N-dimethylformamide. Synthetic Metals 269, 116576 (2020). https://doi.org/10.1016/j.synthmet.2020.116576

    Article  CAS  Google Scholar 

  2. E.T. Mombeshora, A. Stark, Graphene oxide applications in biorefinery catalysis to chemical commodities: critical review, prospects and challenges. Biomass Convers. Biorefinery (2021). https://doi.org/10.1007/s13399-13021-01499-13396

    Article  Google Scholar 

  3. S.P. Sasikala, P. Poulin, C. Aymonier, Advances in subcritical hydro-/solvothermal processing of graphene materials. Adv. Mater. 29(22), 1–32 (2017). https://doi.org/10.1002/adma.201605473

    Article  CAS  Google Scholar 

  4. V.H. Pham, T.V. Cuong, S.H. Hur, E. Oh, E.J. Kim, E.W. Shin, J.S. Chung, Chemical functionalization of graphene sheets by solvothermal reduction of a graphene oxide suspension in N-methyl-2-pyrrolidone. J. Mater. Chem. 21(10), 3371–3377 (2011). https://doi.org/10.1039/c0jm02790a

    Article  CAS  Google Scholar 

  5. M. Seo, D. Yoon, K.S. Hwang, J.W. Kang, J. Kim, Supercritical alcohols as solvents and reducing agents for the synthesis of reduced graphene oxide. Carbon 64, 207–218 (2013). https://doi.org/10.1016/j.carbon.2013.07.053

    Article  CAS  Google Scholar 

  6. S. Pei, H.-M. Cheng, The reduction of graphene oxide. Carbon 50(9), 3210–3228 (2012). https://doi.org/10.1016/j.carbon.2011.11.010

    Article  CAS  Google Scholar 

  7. T. Tene, M. Guevara, A. Valarezo, O. Salguero, F. Arias Arias, M. Arias, A. Scarcello, L.S. Caputi, C. Vacacela Gomez, Drying-time study in graphene oxide. Nanomaterials (Basel) 11(4), 1–14 (2021). https://doi.org/10.3390/nano11041035

    Article  CAS  Google Scholar 

  8. E.T. Mombeshora, P.G. Ndungu, V.O. Nyamori, Effect of graphite/sodium nitrate ratio and reaction time on the physicochemical properties of graphene oxide. New Carbon Mater. 32(2), 174–187 (2017). https://doi.org/10.1016/s1872-5805(17)60114-8

    Article  CAS  Google Scholar 

  9. E.T. Mombeshora, A. Stark, Understanding oxidative reaction of carbon nanoplatelets towards tailored physicochemical properties. Mater. Chem. Phys. 277, 125535 (2022). https://doi.org/10.1016/j.matchemphys.2021.125535

    Article  CAS  Google Scholar 

  10. J.A. Quezada Renteria, C. Ruiz-Garcia, T. Sauvage, L.F. Chazaro-Ruiz, J.R. Rangel-Mendez, C.O. Ania, Photochemical and electrochemical reduction of graphene oxide thin films: tuning the nature of surface defects. Phys Chem Chem Phys 22(36), 20732–20743 (2020). https://doi.org/10.1039/d0cp02053b

    Article  CAS  Google Scholar 

  11. H. Saleem, M. Haneef, H.Y. Abbasi, Synthesis route of reduced graphene oxide via thermal reduction of chemically exfoliated graphene oxide. Mater. Chem. Phys. 204, 1–7 (2018). https://doi.org/10.1016/j.matchemphys.2017.10.020

    Article  CAS  Google Scholar 

  12. H.H. Huang, K.K.H. De Silva, G.R.A. Kumara, M. Yoshimura, Structural evolution of hydrothermally derived reduced graphene oxide. Sci. Rep. 8(1), 6849 (2018). https://doi.org/10.1038/s41598-018-25194-1

    Article  CAS  Google Scholar 

  13. Moradi Kooshksara M, Mohammadi S (2021) Investigation of the in-situ solvothermal reduction of multi-layered graphene oxide in epoxy coating by acetonitrile on improving the hydrophobicity and corrosion resistance. Progress in Organic Coatings 159. doi:https://doi.org/10.1016/j.porgcoat.2021.106432

  14. E.T. Mombeshora, P.G. Ndungu, V.O. Nyamori, The physicochemical properties and capacitive functionality of pyrrolic- and pyridinic-nitrogen, and boron-doped reduced graphene oxide. Electrochim. Acta 258, 467–476 (2017). https://doi.org/10.1016/j.electacta.2017.11.084

    Article  CAS  Google Scholar 

  15. S. Dubin, S. Gilje, K. Wang, V.C. Tung, K. Cha, A.S. Hall, J. Farrar, R. Varshneya, Y. Yang, R.B. Kaner, A one-step, solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents. ACS Nano 4(7), 3845–3852 (2010). https://doi.org/10.1021/nn100511a

    Article  CAS  Google Scholar 

  16. T. Shi, J. Liang, X. Li, C. Zhang, H. Yang, Improving the corrosion resistance of aluminum alloy by creating a superhydrophobic surface structure through a two-Step process of etching followed by polymer modification. Polymers (Basel) (2022). https://doi.org/10.3390/polym14214509

    Article  Google Scholar 

  17. H.N. Tien, V.H. Luan, T.K. Lee, B.-S. Kong, J.S. Chung, E.J. Kim, S.H. Hur, Enhanced solvothermal reduction of graphene oxide in a mixed solution of sulfuric acid and organic solvent. Chem. Eng. J. 211–212, 97–103 (2012). https://doi.org/10.1016/j.cej.2012.09.046

    Article  CAS  Google Scholar 

  18. E.T. Mombeshora, P.G. Ndungu, A.L.L. Jarvis, V.O. Nyamori, The physical and electrochemical properties of nitrogen-doped carbon nanotube- and reduced graphene oxide-titania nanocomposites. Mater. Chem. Phys. 213, 102–112 (2018). https://doi.org/10.1016/j.matchemphys.2018.03.076

    Article  CAS  Google Scholar 

  19. S. Kim, K. Choi, S. Park, Solvothermal reduction of graphene oxide in dimethylformamide. Solid State Sci. 61, 40–43 (2016). https://doi.org/10.1016/j.solidstatesciences.2016.07.013

    Article  CAS  Google Scholar 

  20. D.W. Chang, H.-J. Choi, I.-Y. Jeon, J.-M. Seo, L. Dai, J.-B. Baek, Solvent-free mechanochemical reduction of graphene oxide. Carbon 77, 501–507 (2014). https://doi.org/10.1016/j.carbon.2014.05.055

    Article  CAS  Google Scholar 

  21. D. Luo, G. Zhang, J. Liu, X. Sun, Evaluation criteria for reduced graphene oxide. J. Phys. Chem. C 115(23), 11327–11335 (2011). https://doi.org/10.1021/jp110001y

    Article  CAS  Google Scholar 

  22. S. Park, J. An, R.D. Piner, I. Jung, D. Yang, A. Velamakanni, S.T. Nguyen, R.S. Ruoff, Aqueous suspension and characterization of chemically modified graphene sheets. Chem. Mater. 20, 6592–6594 (2008). https://doi.org/10.1021/cm801932u

    Article  CAS  Google Scholar 

  23. J. Vigneshwaran, S. Abraham, B. Muniyandi, T. Prasankumar, J.-T. Li, S. Jose, Fe2O3 decorated graphene oxide/polypyrrole matrix for high energy density flexible supercapacitor. Surf. Interfaces 27, 101572 (2021). https://doi.org/10.1016/j.surfin.2021.101572

    Article  CAS  Google Scholar 

  24. X. Hou, P. Ren, Z. Dai, Z. Guo, Z. Zhang, A. Sun, W. He, F. Ren, Y. Jin, N–O codoped carbon nanofibers decorated with graphene for high-performance supercapacitors. Energ. Technol. 9(12), 2100743 (2021). https://doi.org/10.1002/ente.202100743

    Article  CAS  Google Scholar 

  25. N. Huu Hieu, H. Huu Dat, L. Tran Trung Nghia, N. Minh Dat, L. Nam Phat, N. Thi Tinh, P. Tan Khang, N. Thai Hoang, M. Thanh Phong, Synthesis of nitrogen and sulfur co-doped reduced graphene oxide by hydrothermal method for fabrication of cathodes in dye-sensitized solar cells. FlatChem 31, 100318 (2022). https://doi.org/10.1016/j.flatc.2021.100318

    Article  CAS  Google Scholar 

  26. S. Li, Z. Wang, H. Jiang, L. Zhang, J. Ren, M. Zheng, L. Dong, L. Sun, Plasma-induced highly efficient synthesis of boron doped reduced graphene oxide for supercapacitors. Chem. Commun. 52(73), 10988–10991 (2016). https://doi.org/10.1039/c6cc04052g

    Article  CAS  Google Scholar 

  27. M. Junaid, M.H.M. Khir, G. Witjaksono, N. Tansu, M.S.M. Saheed, P. Kumar, Z. Ullah, A. Yar, F. Usman, Boron-doped reduced graphene oxide with tunable bandgap and enhanced surface plasmon resonance. Molecules 25(16), 3646 (2020). https://doi.org/10.3390/molecules25163646

    Article  CAS  Google Scholar 

  28. D.J. Morgan, Comments on the XPS analysis of carbon materials. J Carbon Res 7(3), 51 (2021). https://doi.org/10.3390/c7030051

    Article  CAS  Google Scholar 

  29. A.J. Barlow, S. Popescu, K. Artyushkova, O. Scott, N. Sano, J. Hedley, P.J. Cumpson, Chemically specific identification of carbon in XPS imaging using Multivariate Auger Feature Imaging (MAFI). Carbon 107, 190–197 (2016). https://doi.org/10.1016/j.carbon.2016.05.073

    Article  CAS  Google Scholar 

  30. Y.-L. Wang, M. Stanzione, H. Xia, G.G. Buonocore, E. Fortunati, S. Kaciulis, M. Lavorgna, Effect of mercapto-silanes on the functional properties of highly amorphous vinyl alcohol composites with reduced graphene oxide and cellulose nanocrystals. Compos. Sci. Technol. 200, 108458 (2020). https://doi.org/10.1016/j.compscitech.2020.108458

    Article  CAS  Google Scholar 

  31. S. Kaciulis, A. Mezzi, P. Soltani, T. de Caro, H. Xia, Y.L. Wang, T. Zhai, M. Lavorgna, Reduction of graphene oxide by UHV annealing. Surf. Interface Anal. 50(11), 1089–1093 (2018). https://doi.org/10.1002/sia.6424

    Article  CAS  Google Scholar 

  32. V. Ludwig, A.H. de Lima, L. Modesto-Costa, Z.M. Da Costa Ludwig, J.P.A. de Mendonça, W.G. Quirino, F. Sato, Experimental and theoretical study of solvent effect in graphene oxide. J. Mol. Liq. 342, 1–9 (2021). https://doi.org/10.1016/j.molliq.2021.117429

    Article  CAS  Google Scholar 

  33. E.T. Mombeshora, E. Muchuweni, M.L. Davies, V.O. Nyamori, B.S. Martincigh, Metal-organic chemical vapor deposition of anatase titania on multiwalled carbon nanotubes for electrochemical capacitors. Energy Science & Engineering 10, 3493–3506 (2022). https://doi.org/10.1002/ese3.1234

    Article  CAS  Google Scholar 

  34. Y. Shen, H.-B. Zhang, H. Zhang, W. Ren, A. Dasari, G.-S. Tang, Z.-Z. Yu, Structural evolution of functionalized graphene sheets during solvothermal reduction. Carbon 56, 132–138 (2013). https://doi.org/10.1016/j.carbon.2012.12.088

    Article  CAS  Google Scholar 

  35. H. Wang, H. Tian, S. Wang, W. Zheng, Y. Liu, Simple and eco-friendly solvothermal synthesis of luminescent reduced graphene oxide small sheets. Mater. Lett. 78, 170–173 (2012). https://doi.org/10.1016/j.matlet.2012.03.048

    Article  CAS  Google Scholar 

  36. M.A.M. Motchelaho, H. Xiong, M. Moyo, L.L. Jewell, N.J. Coville, Effect of acid treatment on the surface of multiwalled carbon nanotubes prepared from Fe–Co supported on CaCO3 correlation with Fischer-Tropsch catalyst activity. J. Mol. Catal. A: Chem. 335, 189–198 (2011). https://doi.org/10.1016/j.molcata.2010.11.033

    Article  CAS  Google Scholar 

  37. X. Chen, X. Duan, Z.-H. Wen-DaOh, C.-T. Guan, Y.-A. Zhu, T.-T. Lim, Insights into nitrogen and boron-co-doped graphene toward high-performance peroxymonosulfate activation: Maneuverable N-B bonding configurations and oxidation pathways. Appl. Catal. B 253, 419–432 (2019). https://doi.org/10.1016/j.apcatb.2019.04.018

    Article  CAS  Google Scholar 

  38. J.S. Roh, H.W. Yoon, L. Zhang, J.-Y. Kim, J. Guo, H.W. Kim, Carbon lattice structures in nitrogen-doped reduced graphene oxide: Implications for carbon-based electrical conductivity. ACS Appl. Nano Mater. 4(8), 7897–7904 (2021). https://doi.org/10.1021/acsanm.1c01228

    Article  CAS  Google Scholar 

  39. H. Mousavi, R. Moradian, Nitrogen and boron doping effects on the electrical conductivity of graphene and nanotube. Solid State Sci. 13(8), 1459–1464 (2011). https://doi.org/10.1016/j.solidstatesciences.2011.03.008

    Article  CAS  Google Scholar 

  40. E.T. Mombeshora, E. Muchuweni, R. Garcia-Rodriguez, M.L. Davies, V.O. Nyamori, B.S. Martincigh, A review of graphene derivative enhancers for perovskite solar cells. Nanoscale Adv. 4, 2057–2076 (2022). https://doi.org/10.1039/d1na00830g

    Article  CAS  Google Scholar 

  41. E.T. Mombeshora, P.G. Ndungu, A.L.L. Jarvis, V.O. Nyamori, Oxygen-modified multiwalled carbon nanotubes: physicochemical properties and capacitor functionality. Int. J. Energy Res. 41(8), 1182–1201 (2017). https://doi.org/10.1002/er.3702

    Article  CAS  Google Scholar 

  42. K. Mugadza, E.T. Mombeshora, A. Stark, P.G. Ndungu, V.O. Nyamori, Surface modifications of carbon nanotubes towards tailored electrochemical characteristics. J. Mater. Sci. Mater. Electron. 32, 27923–27936 (2021). https://doi.org/10.1007/s10854-021-07174-w

    Article  CAS  Google Scholar 

  43. D. Mohanadas, M.A.A. Mohd Abdah, N.H.N. Azman, J. Abdullah, Y. Sulaiman, A promising negative electrode of asymmetric supercapacitor fabricated by incorporating copper-based metal-organic framework and reduced graphene oxide. Int. J. Hydrogen Energy 46(71), 35385–35396 (2021). https://doi.org/10.1016/j.ijhydene.2021.08.081

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author wishes to thank the University of KwaZulu-Natal (UKZN) and the University of Zimbabwe for providing the necessary support to this work. The author is also grateful to Annegret Stark, Bice S. Martincigh and Vincent O. Nyamori for postdoctoral mentorship, Matthew L. Davies for funding acquisition and mentorship, and James Mcgettrick for assistance in X-ray photoelectron spectroscopy analysis.

Funding

This work is based on research supported wholly by funding through the EPSRC GCRF SUNRISE project (Grant Number: EP/P032591/1) and in part, by the National Research Foundation (NRF) of South Africa (Grant Number: 116631).

Author information

Authors and Affiliations

Authors

Contributions

ETM solely contributed to the conceptualization, methodology, experimental analysis, formal analysis, validation, writing, and editing of the manuscript.

Corresponding author

Correspondence to Edwin T. Mombeshora.

Ethics declarations

Conflict of interest

The author declares that there are no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mombeshora, E.T. Understanding solvothermal reductive reactions of graphene oxide in boron and ammonia solutions. J Mater Sci: Mater Electron 34, 521 (2023). https://doi.org/10.1007/s10854-023-09955-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-09955-x

Navigation