Skip to main content
Log in

Parameter extraction in thin film transistors using artificial neural networks

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work presents a method based on supervised learning for the extraction of parameters in Indium Gallium Zinc Oxide Thin-Film Transistors with aluminium contacts, as an alternative regarding analytical and optimisation methods. The method consists of generating a set of IV curves of the device of interest using Spice software. These curves are the input samples of the Artificial Neural Networks, from which it is intended to predict the different parameters such as threshold voltage, transconductance and contact resistance, from each sample curve. By generating the training set itself, it is possible to label each sample curve, which allows the type of learning to be supervised. The results show that ANNs provide parameters with which it is possible to model physical measurements with error rates of less than 5% when extracting the first two parameters, and errors of between 0.06% and 4.62%, when extracting the three parameters. In addition, a comparison was made between the results of the ANNs and the analytical extraction of parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from corresponding author.

References

  1. S. Raczynski, Modeling and simulation, 1st edn. (Wiley, Hoboken, 2014), pp.1–14

    Book  Google Scholar 

  2. H. Khan, M. A. Bazaz, S. A. Nahvi, Simulation Acceleration of High-Fidelity Nonlinear Power Electronic Circuits Using Model Order Reduction, in: 5th IFAC Conference on Advances in Control and Optimization of Dynamical Systems (2018) https://doi.org/10.1016/j.ifacol.2018.05.069

  3. P. Moreno, R. Picos, M. Roca, E. Garcia, B. Iniguez, M. Estrada, Parameter extraction method using genetic algorithms for an improved OTFT compact model. Spanish Conf. Electron Devices (2007). https://doi.org/10.1109/SCED.2007.383996

    Article  Google Scholar 

  4. C. Tanaka, K. Ikeda, Comprehensive investigation on parameter extraction methodology for short channel amorphous-InGaZnO thin-film transistors, in: 2018 IEEE International Conference on Microelectronic Test Structures (IEEE, 2018) doi: https://doi.org/10.1109/ICMTS.2018.8383756

  5. A. Ortiz-Conde, F.J. García-Sánchez, J. Muci, A. Terán Barrios, J.J. Liou, C.-S. Ho, Microelectron. Reliab. (2013). https://doi.org/10.1016/j.microrel.2012.09.015

    Article  Google Scholar 

  6. A. Cerdeira, M. Estrada, R. García, A. Ortiz, F.J. García, Solid State Electron (2001). https://doi.org/10.1016/S0038-1101(01)00143-5

    Article  Google Scholar 

  7. S.K. Ojha, B. Kumar, SILICON (2022). https://doi.org/10.1007/s12633-021-01149-6

    Article  Google Scholar 

  8. C. Avila, A. Ortiz, J.A. Caraveo, M.A. Quevedo, Trans. Electr. Electron. Mater. 22(4), 550–556 (2021). https://doi.org/10.1007/s42341-020-00268-y

    Article  Google Scholar 

  9. P. Mittal, Y.S. Negi, R.K. Singh, J. Comput. Electron (2015). https://doi.org/10.1007/s10825-015-0719-8

    Article  Google Scholar 

  10. K. Bhargava, V. Singh, J. Comput. Electron (2014). https://doi.org/10.1007/s10825-014-0574-z

    Article  Google Scholar 

  11. S. Xin-zhi, L. Hai-wen, S. Xiao-wei, C. Yan-feng, C. Zhi-qun, L. Zheng-fan, Wuhan Univ. J. Nat. Sci. (2005). https://doi.org/10.1007/BF02830676

    Article  Google Scholar 

  12. S. Nautiyal, P. Mittal, Contact resistance in organic transistors: Extraction using variable length method, in: 2017 International Conference on Computing, Communication and Automation, (IEEE, 2017) doi: https://doi.org/10.1109/CCAA.2017.8230051

  13. M.E. Rivas-Aguilar et al., Curr. Appl. Phys. (2018). https://doi.org/10.1016/j.cap.2018.04.002

    Article  Google Scholar 

  14. A. Pacheco-Sanchez, M. Claus, S. Mothes, M. Schröter, Solid State Electron. (2016). https://doi.org/10.1016/j.sse.2016.07.011

    Article  Google Scholar 

  15. H. Bae et al., IEEE Electron Device Lett. (2016). https://doi.org/10.1109/LED.2015.2509473

    Article  Google Scholar 

  16. N. Akkan, M. Altun, H. Sedef, Parameter Extraction Method Using Hybrid Artificial Bee Colony Algorithm for an OFET Compact Model, in: 2018 15th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (IEEE, 2018) doi: https://doi.org/10.1109/SMACD.2018.8434861

  17. S. Moparthi, P. K. Tiwari, G. K. Saramekala, Genetic algorithm-based threshold voltage prediction of SOI JLT using multi-variable nonlinear regression, in: 2021 International Symposium on Devices, Circuits and Systems (IEEE, 2021) doi: https://doi.org/10.1109/ISDCS52006.2021.9397911

  18. S. I. Sayed, M. M. Abutaleb, Z. B. Nossair, Improved CNFET performance based on genetic algorithm parameters optimization, in: 2017 8th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEEE, 2017) doi: https://doi.org/10.1109/IEMCON.2017.8117185

  19. I. Benacer, Z. Dibi, Int. J. Autom. Comput. (2016). https://doi.org/10.1007/s11633-015-0918-6

    Article  Google Scholar 

  20. R. Picos et al., Solid. State. Electron. (2007). https://doi.org/10.1016/j.sse.2007.02.031

    Article  Google Scholar 

  21. J. Oh et al., ECS J. Solid State Sci. (2022). https://doi.org/10.1149/2162-8777/ac6894

    Article  Google Scholar 

  22. Q. Yao et al., Micromachines (2021). https://doi.org/10.3390/mi13010004

    Article  Google Scholar 

  23. Berkeley, Aim-Spice, (Software, 2022), http://www.aimspice.com/. Accessed 08 August 2022

  24. R.J. Baker, CMOS, 3rd edn. (Wiley-IEEE Press, Hoboken, 2010), pp.131–145

    Book  Google Scholar 

  25. M. Flasiński, Introduction to artificial intelligence, 1st edn. (Springer, Cham, 2016), pp.156–157. https://doi.org/10.1007/978-3-319-40022-8

    Book  Google Scholar 

  26. P. Isasi, I. Galván, Redes neuronales artificiales (Pearson Prentice Hall, Madrid, 2004), pp.1–60

    Google Scholar 

  27. M. Hagan, H. Demuth, M. Beale, O. De Jesus, Neural network design, 2nd edn. (Ebook, Nedlands, 2014), p.2.2-2.10

    Google Scholar 

  28. W. Ertel, Introduction to artificial intelligence, 2nd edn. (Springer, Cham, 2017), pp.245–260. https://doi.org/10.1007/978-3-319-58487-4

    Book  Google Scholar 

  29. Analog Devices Inc., LTspice, (Software, 2022), https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html. Accesses 09 August 2022

  30. ScikitLearn, sklearn.model_selection.GridSearchCV, (Website, 2022), https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV. Accessed 09 August 2022

  31. Google, Colaboratory, (Website, 2022), https://research.google.com/colaboratory/intl/es/faq.html. Accessed 09 August 2022

  32. M. Abadabi et al., Tensorflow, (Website, 2022), https://www.tensorflow.org/?hl=es-419 Accessed 09 August 2022

Download references

Acknowledgements

Nanoscience, Micro and Nanotechnologies Centre of the National Polytechnic Institute is thanked for the fabrication of devices whose transferential curves were used to test the methodology proposed in this research. Thanks, are also due to the National Council of Science and Technology for the scholarship for advanced studies.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

RCV performed the parameter extraction using NNs and drafted the manuscript, NHC manufactured the transistors with which the method proposed in this work was tested, RZG performed the parameter extraction using the analytical method, FGL and ALC analysed the proposed method and improved the form and wording of the manuscript.

Corresponding author

Correspondence to Roberto C. Valdés.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valdés, R.C., García, F., García, R.Z. et al. Parameter extraction in thin film transistors using artificial neural networks. J Mater Sci: Mater Electron 34, 555 (2023). https://doi.org/10.1007/s10854-023-09953-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-09953-z

Navigation