Skip to main content

Advertisement

Log in

Influence of manganese addition in ZnO-based piezoelectric nanogenerator for mechanical energy harvesting

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, a simple hydrothermal technique has been used to grow the manganese (Mn)-doped ZnO nanostructure on the flexible indium tin oxide substrate. The Mn doping concentrations (1%, 2.5%, and 5%) have been systematically optimized with respect to piezoelectric output. The output performance of the piezoelectric nanogenerator (PENG) device with 2.5% Mn-doped ZnO achieved 3.3 times higher than the pure PENG device. Peak-to-peak open-circuit voltage and short-circuit current of the Mn-doped PENG device is 5.32 V and 52.33 nA, respectively. The PENG device with a 2.5% Mn doping exhibits a maximum power density of 60.01 nW/cm2 at a 110-MΩ load resistance. The device’s durability has also been tested, and it showed good stability without deterioration. Finally, utilizing a commercial compressor, the system has proven to capture vibrational energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. G. Timilsina, K.U. Shah, in Energy technologies for sustainable development goal 7, ed. by A.A. Adenle, M.R. Chertow, E.H.M. Moors, D.J. Pannell, (Oxford University Press, Oxford, 2020), p. 36

  2. P. Pradhan, L. Costa, D. Rybski, W. Lucht, J.P. Kropp, A systematic study of sustainable development goal (SDG) interactions. Earth’s Future 5(11), 1169–1179 (2017)

    Article  Google Scholar 

  3. N. AlQattan, M. Acheampong, F.M. Jaward, F.C. Ertem, N. Vijayakumar, T. Bello, Reviewing the potential of Waste-to-energy (WTE) technologies for sustainable development goal (SDG) numbers seven and eleven. Renew. Energy Focus 27, 97–110 (2018)

    Article  Google Scholar 

  4. Y. Yang, L. Lin, Y. Zhang, Q. Jing, T.C. Hou, Z.L. Wang, Self-powered magnetic sensor based on a triboelectric nanogenerator. ACS Nano 6(11), 10378–10383 (2012)

    Article  CAS  Google Scholar 

  5. J. Zhao, R. Ghannam, K.O. Htet, Y. Liu, M.K. Law, V.A. Roy, B. Michel, M.A. Imran, H. Heidari, Self-powered implantable medical devices: photovoltaic energy harvesting review. Adv. Healthc. Mater 9(17), 2000779 (2020)

    Article  CAS  Google Scholar 

  6. A. Nozariasbmarz, H. Collins, K. Dsouza, M.H. Polash, M. Hosseini, M. Hyland, J. Liu, A. Malhotra, F.M. Ortiz, F. Mohaddes, V.P. Ramesh, Review of wearable thermoelectric energy harvesting: from body temperature to electronic systems. Appl. Energy 258, 114069 (2020)

    Article  Google Scholar 

  7. M. Manikandan, P. Rajagopalan, N. Patra, S. Jayachandran, M. Muralidharan, S.M. Prabu, I.A. Palani, V. Singh, Development of Sn-doped ZnO based ecofriendly piezoelectric nanogenerator for energy harvesting application. Nanotechnology 31(18), 185401 (2020)

    Article  CAS  Google Scholar 

  8. P. Rajagopalan, S. Huang, L. Shi, H. Kuang, H. Jin, S. Dong, W. Shi, X. Wang, J. Luo, Novel insights from the ultra-thin film, strain-modulated dynamic triboelectric characterizations. Nano Energy 80, 105560 (2021)

    Article  CAS  Google Scholar 

  9. F. Mokhtari, G.M. Spinks, C. Fay, Z. Cheng, R. Raad, J. Xi, J. Foroughi, Wearable electronic textiles from nanostructured piezoelectric fibers. Adv. Mater. Technol 5(4), 1900900 (2020)

    Article  CAS  Google Scholar 

  10. G. Jiji, A retrospect on the role of piezoelectric nanogenerators in the development of the green world. RSC Adv. 7(53), 33642–33670 (2017)

    Article  Google Scholar 

  11. X. Wang, J. Zhou, J. Song, J. Liu, N. Xu, Z.L. Wang, Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett. 6(12), 2768–2772 (2006)

    Article  CAS  Google Scholar 

  12. S. Paria, S.K. Karan, R. Bera, A.K. Das, A. Maitra, B.B. Khatua, A facile approach to develop a highly stretchable PVC/ZnSnO3 piezoelectric nanogenerator with high output power generation for powering portable electronic devices. Ind. Eng. Chem. Res 55(40), 10671–10680 (2016)

    Article  CAS  Google Scholar 

  13. C. Pan, L. Dong, G. Zhu, S. Niu, R. Yu, Q. Yang, Y. Liu, Z.L. Wang, High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array. Nat. Photonics 7(9), 752–758 (2013)

    Article  CAS  Google Scholar 

  14. R. Sun, S.C. Carreira, Y. Chen, C. Xiang, L. Xu, B. Zhang, M. Chen, I. Farrow, F. Scarpa, J. Rossiter, Stretchable piezoelectric sensing systems for self-powered and wireless health monitoring. Adv. Mater. Technol 4(5), 1900100 (2019)

    Article  Google Scholar 

  15. H. Mei, M.F. Haider, R. Joseph, A. Migot, V. Giurgiutiu, Recent advances in piezoelectric wafer active sensors for structural health monitoring applications. Sensors 19(2), 383 (2019)

    Article  Google Scholar 

  16. E.J. Ko, E.J. Lee, M.H. Choi, T.H. Sung, D.K. Moon, PVDF based flexible piezoelectric nanogenerators using conjugated polymer: PCBM blend systems. Sens. Actuators A: Phys 259, 112–120 (2017)

    Article  CAS  Google Scholar 

  17. L. Yang, Q. Zhao, K. Chen, Y. Ma, Y. Wu, H. Ji, J. Qiu, PVDF-based composition-gradient multilayered nanocomposites for flexible high-performance piezoelectric nanogenerators. ACS Appl. Mater. Interfaces 12(9), 11045–11054 (2020)

    Article  CAS  Google Scholar 

  18. C. Yoon, B. Jeon, G. Yoon, Enhanced output performance of sandwich-type ZnO piezoelectric nanogenerator with adhesive carbon tape. Sens. Actuators A: Phys 318, 112499 (2021)

    Article  CAS  Google Scholar 

  19. B. Saravanakumar, S.J. Kim, Growth of 2D ZnO nanowall for energy harvesting application. J. Phys. Chem. C 118(17), 8831–8836 (2014)

    Article  CAS  Google Scholar 

  20. P. Rajagopalan, V. Singh, I.A. Palani, Enhancement of ZnO-based flexible nano generators via a sol–gel technique for sensing and energy harvesting applications. Nanotechnology 29(10), 105406 (2018)

    Article  CAS  Google Scholar 

  21. W. Zhang, H. Yang, L. Li, S. Lin, P. Ji, C. Hu, D. Zhang, Y. Xi, Flexible piezoelectric nanogenerators based on a CdS nanowall for self-powered sensors. Nanotechnology 31(38), 385401 (2020)

    Article  CAS  Google Scholar 

  22. R. Yu, X. Wang, W. Wu, C. Pan, Y. Bando, N. Fukata, Y. Hu, W. Peng, Y. Ding, Z.L. Wang, Temperature dependence of the piezophototronic effect in CdS nanowires. Adv. Funct. Mater 25(33), 5277–5284 (2015)

    Article  CAS  Google Scholar 

  23. J.H. Kang, D.K. Jeong, S.W. Ryu, Transparent, flexible piezoelectric nanogenerator based on GaN membrane using electrochemical lift-off. ACS Appl. Mater. Interfaces 9(12), 10637–10642 (2017)

    Article  CAS  Google Scholar 

  24. W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T.F. Heinz, J. Hone, Piezoelectricity of single-atomic-layer MoS 2 for energy conversion and piezotronics. Nature 514(7523), 470–474 (2014)

    Article  CAS  Google Scholar 

  25. X. Niu, W. Jia, S. Qian, J. Zhu, J. Zhang, X. Hou, J. Mu, W. Geng, J. Cho, J. He, X. Chou, High-performance PZT-based stretchable piezoelectric nanogenerator. ACS Sustain. Chem. Eng. 7(1), 979–985 (2018)

    Article  Google Scholar 

  26. K.I. Park, S. Xu, Y. Liu, G.T. Hwang, S.J.L. Kang, Z.L. Wang, K.J. Lee, Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates. Nano Lett. 10(12), 4939–4943 (2010)

    Article  CAS  Google Scholar 

  27. A.B. Djurišić, X. Chen, Y.H. Leung, A.M.C. Ng, ZnO nanostructures: growth, properties and applications. J. Mater. Chem 22(14), 6526–6535 (2012)

    Article  Google Scholar 

  28. Ü Özgür, Y.I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Doğan, V.C.S.J. Avrutin, S.J. Cho, A.H. Morkoç, A comprehensive review of ZnO materials and devices. J. Appl. Phys 98(4), 11 (2005)

    Article  Google Scholar 

  29. L. Zhang, S. Bai, C. Su, Y. Zheng, Y. Qin, C. Xu, Z.L. Wang, A high-reliability kevlar fiber‐ZnO nanowires hybrid nanogenerator and its application on self‐powered UV detection. Adv. Funct. Mater 25(36), 5794–5798 (2015)

    Article  CAS  Google Scholar 

  30. Z.L. Wang, ZnO nanowire and nanobelt platform for nanotechnology. Mater. Sci. Eng.: R: Rep 64(3–4), 33–71 (2009)

    Article  Google Scholar 

  31. R. Yu, C. Pan, J. Chen, G. Zhu, Z.L. Wang, Enhanced performance of a ZnO nanowire-based self‐powered glucose sensor by piezotronic effect. Adv. Funct. Mater 23(47), 5868–5874 (2013)

    Article  CAS  Google Scholar 

  32. Q. Zheng, B. Shi, Z. Li, Z.L. Wang, Recent progress on piezoelectric and triboelectric energy harvesters in biomedical systems. Adv. Sci 4(7), 1700029 (2017)

    Article  Google Scholar 

  33. X. Wang, C.J. Summers, Z.L. Wang, Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays. Nano Lett 4(3), 423–426 (2004)

    Article  CAS  Google Scholar 

  34. J. Han, F. Fan, C. Xu, S. Lin, M. Wei, X. Duan, Z.L. Wang, ZnO nanotube-based dye-sensitized solar cell and its application in self-powered devices. Nanotechnology 21(40), 405203 (2010)

    Article  Google Scholar 

  35. X. Wang, J. Shi, in Piezoelectric nanogenerators for self-powered nanodevices, ed. by Gianni Ciofani, Arianna Menciassi, (Springer, New York, 2012), pp. 135–172

  36. X. Zhang, W. Wang, D. Zhang, Q. Mi, S. Yu, Self-powered ethanol gas sensor based on the piezoelectric Ag/ZnO nanowire arrays at room temperature. J. Mater. Sci.: Mater. Electron 32(6), 7739–7750 (2021)

    CAS  Google Scholar 

  37. M.K. Gupta, J.H. Lee, K.Y. Lee, S.W. Kim, Two-dimensional vanadium-doped ZnO nanosheet-based flexible direct current nanogenerator. ACS Nano 7(10), 8932–8939 (2013)

    Article  CAS  Google Scholar 

  38. S.H. Shin, Y.H. Kim, M.H. Lee, J.Y. Jung, J.H. Seol, J. Nah, Lithium-doped zinc oxide nanowires–polymer composite for high performance flexible piezoelectric nanogenerator. ACS Nano 8(10), 10844–10850 (2014)

    Article  CAS  Google Scholar 

  39. W.Y. Chang, T.H. Fang, J.H. Tsai, Electromechanical and photoluminescence properties of Al-doped ZnO nanorods applied in piezoelectric nanogenerators. J. Low Temp. Phys 178(3), 174–187 (2015)

    Article  CAS  Google Scholar 

  40. N. Sinha, G. Ray, S. Godara, M.K. Gupta, B. Kumar, Enhanced piezoelectric output voltage and ohmic behavior in Cr-doped ZnO nanorods. Mater. Res. Bull 59, 267–271 (2014)

    Article  Google Scholar 

  41. T. Zhao, Y. Fu, Y. Zhao, L. Xing, X. Xue, Ga-doped ZnO nanowire nanogenerator as self-powered/active humidity sensor with high sensitivity and fast response. J. Alloys Compd. 648, 571–576 (2015)

    Article  CAS  Google Scholar 

  42. K. Batra, N. Sinha, S. Goel, H. Yadav, A.J. Joseph, B. Kumar, Enhanced dielectric, ferroelectric and piezoelectric performance of Nd–ZnO nanorods and their application in flexible piezoelectric nanogenerator. J. Alloys Compd. 767, 1003–1011 (2018)

    Article  CAS  Google Scholar 

  43. P. Rajagopalan, P. Jakhar, I.A. Palani, V. Singh, S.J. Kim, Elucidations on the effect of lanthanum doping in ZnO towards enhanced performance nanogenerators. Int. J. Precision Eng. Manufacturing-Green Technol 7(1), 77–87 (2020)

    Article  Google Scholar 

  44. D. Zhu, T. Hu, Y. Zhao, W. Zang, L. Xing, X. Xue, High-performance self-powered/active humidity sensing of Fe-doped ZnO nanoarray nanogenerator. Sens. Actuators B 213, 382–389 (2015)

    Article  CAS  Google Scholar 

  45. Y.L. Chu, S.J. Young, L.W. Ji, T.T. Chu, P.H. Chen, Synthesis of Ni-doped ZnO nanorod arrays by chemical bath deposition and their application to nanogenerators. Energies 13(11), 2731 (2020)

    Article  CAS  Google Scholar 

  46. N.A. Putri, V. Fauzia, S. Iwan, L. Roza, A.A. Umar, S. Budi, Mn-doping-induced photocatalytic activity enhancement of ZnO nanorods prepared on glass substrates. Appl. Surf. Sci 439, 285–297 (2018)

    Article  CAS  Google Scholar 

  47. M. Bououdina, K. Omri, M. El-Hilo, A. El Amiri, O.M. Lemine, A. Alyamani, E.K. Hlil, H. Lassri, E. Mir, Structural and magnetic properties of Mn-doped ZnO nanocrystals. Phys. E: Low-dimensional Syst. Nanostruct 56, 107–112 (2014)

    Article  CAS  Google Scholar 

  48. R. Vinod, M.J. Bushiri, S.R. Achary, V. Muñoz-Sanjosé, Quenching and blue shift of UV emission intensity of hydrothermally grown ZnO:Mn nanorods. Mater. Sci. Eng. B 191, 1–6 (2015)

    Article  CAS  Google Scholar 

  49. M. Yuan, W. Fu, H. Yang, Q. Yu, S. Liu, Q. Zhao, Y. Sui, D. Ma, P. Sun, Y. Zhang, B. Luo, Structural and magnetic properties of Mn-doped ZnO nanorod arrays grown via a simple hydrothermal reaction. Mater. Lett. 63(18–19), 1574–1576 (2009)

    Article  CAS  Google Scholar 

  50. D. Mukherjee, T. Dhakal, H. Srikanth, P. Mukherjee, S. Witanachchi, Evidence for carrier-mediated magnetism in Mn-doped ZnO thin films. Phys. Rev. B 81(20), 205202 (2010)

    Article  Google Scholar 

  51. H.K. Yadav, K. Sreenivas, R.S. Katiyar, V. Gupta, Defect induced activation of Raman silent modes in rf co-sputtered Mn doped ZnO thin films. J. Phys. D 40(19), 6005 (2007)

    Article  CAS  Google Scholar 

  52. N. Kicir, T. Tüken, M. Akyol, A. Ekicibil, Y. Ufuktepe, Structural, electronic and magnetic properties of Mn doped ZnO nanoplates synthesized by electrodeposition method. J. Electron Spectrosc. Relat. Phenom 237, 146892 (2019)

    Article  CAS  Google Scholar 

  53. J. Wang, W. Chen, M. Wang, Properties analysis of Mn-doped ZnO piezoelectric films. J. Alloys Compd. 449(1–2), 44–47 (2008)

    Article  CAS  Google Scholar 

  54. T. Yoshimura, H. Sakiyama, T. Oshio, A. Ashida, N. Fujimura, Direct piezoelectric properties of Mn-doped ZnO epitaxial films. Jpn. J. Appl. Phys. 49(2R), 021501 (2010)

    Article  Google Scholar 

  55. X.M. Cheng, C.L. Chien, Magnetic properties of epitaxial Mn-doped ZnO thin films. J. Appl. Phys 93(10), 7876–7878 (2003)

    Article  CAS  Google Scholar 

  56. M. Sima, M. Baibarac, E. Vasile, M. Sima, L. Mihut, Fabrication and Raman scattering of a core–shell structure based on Mn doped ZnO and barium titanate. Appl. Surf. Sci 355, 1057–1062 (2015)

    Article  CAS  Google Scholar 

  57. V.V. Strelchuk, A.S. Nikolenko, O.F. Kolomys, S.V. Rarata, K.A. Avramenko, РМ Lytvyn, P. Tronc, C.O. Chey, O. Nur, M. Willander, Optical and structural properties of Mn-doped ZnO nanorods grown by aqueous chemical growth for spintronic applications. Thin Solid Films 601, 22–27 (2016)

    Article  CAS  Google Scholar 

  58. R.S. Ganesh, E. Durgadevi, M. Navaneethan, V.L. Patil, S. Ponnusamy, C. Muthamizhchelvan, S. Kawasaki, P.S. Patil, Y. Hayakawa, Low temperature ammonia gas sensor based on Mn-doped ZnO nanoparticle decorated microspheres. J. Alloys Compd. 721, 182–190 (2017)

    Article  Google Scholar 

  59. F. Ahmed, N. Arshi, M.S. Anwar, R. Danish, B.H. Koo, Mn-doped ZnO nanorod gas sensor for oxygen detection. Curr. Appl. Phys 13, 64–68 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

Indumathi S would like to express her gratitude to the Indian Institute of Technology Indore for providing facilities and mechatronics instrumentation lab members for their valuable discussion.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

SI contributed to conceptualization, data curation, writing, reviewing, & editing of the manuscript, writing of the original draft, investigation, formal analysis, methodology, software, validation, and visualization. SV contributed to formal analysis, validation, reviewing & editing of the manuscript, project administration, supervision, validation, and funding acquisition. MM contributed to investigation, formal analysis, methodology, and writing, reviewing, & editing of the manuscript.

Corresponding authors

Correspondence to S. Indumathi or S. Venkatesan.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Ethical approval

None of the authors of this paper conducted any research on humans and animals.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Indumathi, S., Venkatesan, S. & Manikandan, M. Influence of manganese addition in ZnO-based piezoelectric nanogenerator for mechanical energy harvesting. J Mater Sci: Mater Electron 34, 563 (2023). https://doi.org/10.1007/s10854-023-09939-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-09939-x

Navigation