Skip to main content
Log in

Investigation of dielectric properties of amorphous, anatase, and rutile TiO2 structures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, TiO2 powder was prepared by sol-gel methods, divided into equal amounts, and three samples were formed. They, except for one sample, were annealed at different temperatures, and three bulk samples were obtained. The crystal structures of all samples were determined by X-ray diffraction (XRD) measurements. According to the XRD measurements, the first sample (T1) was an amorphous phase that did not undergo any heat treatment, the second sample (T2) annealed at 773 K was an anatase phase, and the last sample (T3) annealed at 1073 K was a rutile phase. Crystal parameters such as crystal sizes, dislocation density, and microstrain were determined by different methods such as the Scherrer, the Williamson-Hall, and the Halder-Wagner. The sizes of anatase and rutile crystal structures calculated based on the Scherrer equation of all samples were the smallest among all methods. These values were 21 and 54 nm for T2 and T3, respectively. Capacitance and conductance measurements of all samples were taken in the frequency range of 1 kHz to 1.5 MHz. Capacitance and conductance values of the sample, which was the amorphous crystal structure, were higher than other samples. The dielectric constant of the sample of rutile crystal structure might stay almost steady with changing frequency. Dielectric values of T1, T2, and T3 samples were 7.02 × 103, 8.89 × 101, and 1.39 × 102 at 10 kHz, respectively. These values were 1.12 × 103, 5.24 × 101, and 1.24 × 102 at 1 MHz for T1, T2, and T3, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

All data generated and analyzed during this study are included in this publication.

References

  1. K. Natori, D. Otani, N. Sano, Appl. Phys. Lett. 73, 632 (1998)

    Article  CAS  Google Scholar 

  2. R. Annunziata, P. Zuliani, M. Borghi, G. De Sandre, L. Scotti, C. Prelini, M. Tosi, I. Tortorelli, F. Pellizzer, Technical Digest - International Electron Devices Meeting, IEDM 97 (2009)

  3. G. Kang, J. Yoo, J. Ahn, K. Kim, Nano Today 10, 22 (2015)

    Article  CAS  Google Scholar 

  4. S. Kalaiarasi, M. Jose, Appl. Phys. A Mater. Sci. Process. 123, 1 (2017)

    Article  CAS  Google Scholar 

  5. F. Parrino, L. Palmisano, S. Al Jitan, M. Bellardita, A. Berardinelli, M.C. Bignozzi, J.P. Bolivar, G. Camera-Roda, A. Cannavale, M. Cascione, V. De Matteis, R. Del Sole, F. Di Franco, E. All, Titanium Dioxide (TiO2) and Its Applications (elsevier, Amsterdam, Netherlands, 2021)

    Google Scholar 

  6. S. Huang, C. Wu, Y. Wang, X. Yang, R. Yuan, Y. Chai, Sens. Actuators B Chem. 339, 129843 (2021)

    Article  CAS  Google Scholar 

  7. Y. You, W. Tian, L. Min, F. Cao, K. Deng, L. Li, Adv. Mater. Interfaces 7, 1 (2020)

    CAS  Google Scholar 

  8. H.I. Elsaeedy, A. Qasem, H.A. Yakout, M. Mahmoud, J Alloys Compd 867, 159150 (2021)

    Article  CAS  Google Scholar 

  9. H. O’Neal Tugaoen, S. Garcia-Segura, K. Hristovski, P. Westerhoff, Sci. Total Environ 613–614, 1331 (2018)

    Article  Google Scholar 

  10. E.A.N. Simonetti, T.C. de Oliveira, Á.E.C. do Machado, A.A.C. Silva, A.S. dos Silva, L.S. de Cividanes, Ceram Int. 47, 17844 (2021)

    Article  Google Scholar 

  11. D. Reyes-Coronado, G. Rodríguez-Gattorno, M.E. Espinosa-Pesqueira, C. Cab, R. De Coss, G. Oskam, Nanotechnology 19(14), 145605 (2008)

    Article  CAS  Google Scholar 

  12. S. Bakardjieva, V. Stengl, L. Szatmary, J. Subrt, J. Lukac, N. Murafa, D. Niznansky, K. Cizek, J. Jirkovsky, N. Petrova, J. Mater. Chem. 16, 1709 (2006)

    Article  CAS  Google Scholar 

  13. Y. Kumari, L.K. Jangir, A. Kumar, M. Kumar, K. Awasthi, Phys. B Condens Matter 602, 412465 (2021)

    Article  CAS  Google Scholar 

  14. V. Bessergenev, Mater. Res. Bull. 44, 1722 (2009)

    Article  CAS  Google Scholar 

  15. H. Al-Dmour, AIMS Mater. Sci. 8, 261 (2021)

    Article  CAS  Google Scholar 

  16. M. Fukuhara, T. Kuroda, F. Hasegawa, Sci. Rep. 6, 1 (2016)

    Article  Google Scholar 

  17. R. Srivastava, B.C. Yadav, Adv. Mater. Lett. 3, 197 (2012)

    Article  CAS  Google Scholar 

  18. O. Avciata, Y. Benli, S. Gorduk, O. Koyun, J. Eng. Technol. Appl. Sci. 1, 34 (2016)

    Google Scholar 

  19. W.P. Chen, Y. Wang, X.X. Wang, J. Wang, H.L.W. Chan, Mater. Chem. Phys. 82, 520 (2003)

    Article  CAS  Google Scholar 

  20. H. Yin, Y. Wada, T. Kitamura, S. Kambe, S. Murasawa, H. Mori, T. Sakata, S. Yanagida, J. Mater. Chem. 11, 1694 (2001)

    Article  CAS  Google Scholar 

  21. B. Saing, B. Budiarto, IOP Conf. Ser. Mater. Sci. Eng. 237, 0 (2017)

    Article  CAS  Google Scholar 

  22. Y. Doubi, B. Hartiti, H. Labrim, S. Fadili, M. Tahri, A. Belafhaili, M. Siadat, P. Thevenin, Appl. Phys. A Mater. Sci. Process. 127, 1 (2021)

    Article  Google Scholar 

  23. P. Ranjan, E. Selvam, R. Jayaganthan, H. Suematsu, R. Sarathi, Mater. Today Proc. 5, 17304 (2018)

    Article  CAS  Google Scholar 

  24. J. Jia, H. Yamamoto, T. Okajima, Y. Shigesato, Nanoscale Res Lett 11(1), 1–9 (2016)

    Article  Google Scholar 

  25. N. Nithyaa, N. Victor Jaya, Appl. Phys. A Mater. Sci. Process. 127, 1 (2021)

    Article  Google Scholar 

  26. S. Mustapha, J.O. Tijani, M.M. Ndamitso, A.S. Abdulkareem, D.T. Shuaib, A.T. Amigun, H.L. Abubakar, Int. Nano Lett. 11, 241 (2021)

    Article  CAS  Google Scholar 

  27. A. Maurya, P. Chauhan, S.K. Mishra, R.K. Srivastava, J. Alloys Compd. 509, 8433 (2011)

    Article  CAS  Google Scholar 

  28. J.W. Jang, H.K. Kim, D.Y. Lee, Mater. Lett. 58, 1160 (2004)

    Article  CAS  Google Scholar 

  29. P. Scherrer, Math-Ohys Kl 2, 98 (1918)

    Google Scholar 

  30. S.K. Sen, U.C. Barman, M.S. Manir, P. Mondal, S. Dutta, M. Paul, M.A.M. Chowdhury, M.A. Hakim, Adv. Nat. Sci. Nanosci. Nanotechnol. 11, 025004 (2020)

    Article  CAS  Google Scholar 

  31. G.K. Williamson, W.H. Hall, Acta Metall 1, 22 (1953)

    Article  CAS  Google Scholar 

  32. N.C. Halder, C.N.J. Wagner, Acta Crystallogr. 20, 312 (1966)

    Article  CAS  Google Scholar 

  33. K. Manickam, V. Muthusamy, S. Manickam, T.S. Senthil, G. Periyasamy, S. Shanmugam, Mater. Today Proc. 23, 68 (2019)

    Article  Google Scholar 

  34. C.L. Holloway, E.F. Kuester, M. Nieto-Vesperinas, R. Paniagua-Dominguez, B. Luk’yanchuk, A.I. Kuznetsov, N. Bonod, S. Kruk, Y. Kivshar, A. Faraon, A. Arbabi, S.M. Kamali, E. Arbabi, A. Majumdar, C. Zou, I. Staude, D.N. Neshe, M. Shcherbakov, S. Liu, I. Brener, A. Fedyanin, A. Sprafke, J. Schilling, Tutorials in Metamaterials (CRC Press, 2020)

  35. N. Turan, J. Mater. Sci.: Mater. Electron 32, 25084 (2021)

    CAS  Google Scholar 

  36. B. Babuji, C. Balasubramanian, M. Radhakrishnan, J. Non Cryst. Solids 55, 405 (1983)

    Article  CAS  Google Scholar 

  37. G. Siddall, Vacuum 9, 274 (1959)

    Article  Google Scholar 

  38. W.P. Chen, Y. Wang, J.Y. Dai, S.G. Lu, X.X. Wang, P.F. Lee, H.L.W. Chan, C.L. Choy, Appl. Phys. Lett. 84, 103 (2004)

    Article  CAS  Google Scholar 

  39. X. Hao, J. Adv. Dielectr. 03, 1330001 (2013)

    Article  Google Scholar 

  40. Ü. Akın, ÖF. Yüksel, and N. Tuğluoğlu, Silicon 12 (6), 1399–1405 (2021)

    Article  Google Scholar 

  41. T. Ali, A. Ahmed, M. Naseem siddique, P. Tripathi, Phys. B Condens Matter 534, 1 (2018)

    Article  CAS  Google Scholar 

  42. C.G. Koops, Phys. Rev 83, 121 (1951)

    Article  CAS  Google Scholar 

  43. M. ben Elbahri, A. Kahouli, B. Mercey, W. Prellier, U. Lüders, J. Phys. D Appl. Phys. 52, 175308 (2019)

    Article  CAS  Google Scholar 

  44. Q. Cheng, W. Ahmad, G. Liu, K. Wang, Proceedings of the IEEE Conference on Nanotechnology 1598 (2011)

  45. J.H. Joshi, K.V. Vadhel, G.M. Joshi, M.J. Joshi, H.O. Jethva, K.D. Parikh, Chin. J. Phys 65, 268 (2020)

    Article  CAS  Google Scholar 

  46. H.M. El-Mallah, Acta Phys. Pol. A 122, 174 (2012)

    Article  CAS  Google Scholar 

  47. W. Xu, Z. Li, M. Zhong, C. Zhang, L. Xu, H. Li, Y. Sheng, Z. Zhang, C. Hu, J. Mater. Sci.: Mater. Electron 33,11783–11793 (2022)

    CAS  Google Scholar 

  48. M.T. Sebastian, Measurement of microwave dielectric properties and factors affecting them (Wiley, Hoboken, 2008)

    Book  Google Scholar 

  49. J. Workmanjr, In the handbook of organic compounds (Elsevier Inc., USA, Cambridge, 2001), pp.269–274

    Book  Google Scholar 

  50. N. Singh, A. Agarwal, S. Sanghi, Curr. Appl. Phys 11, 783 (2011)

    Article  Google Scholar 

  51. M.M. El-Desoky, A.E. Hannora, Glass Phys. Chem 46, 487 (2020)

    Article  CAS  Google Scholar 

  52. A.K. Pradhan, S. Saha, T.K. Nath, Appl. Phys. A Mater. Sci. Process. 123, 0 (2017)

    Article  CAS  Google Scholar 

  53. F. Yakuphanoglu, Y. Aydogdu, U. Schatzschneider, E. Rentschler, Solid State Commun 128, 63 (2003)

    Article  CAS  Google Scholar 

  54. S.J. Sondarva, D.V. Shah, J. Alloys Compd. 859, 157773 (2021)

    Article  CAS  Google Scholar 

  55. G.M. Tsangaris, G.C. Psarras, N. Kouloumbi, J. Mater. Sci. 33, 2027 (1998)

    Article  CAS  Google Scholar 

  56. J. Belattar, M.P.F. Graça, L.C. Costa, M.E. Achour, C. Brosseau 107(12), 124111 (2010)

    Google Scholar 

  57. M. Coşkun, Ö. Polat, F.M. Coşkun, Z. Durmuş, M. Çağlar, A. Türüt, Royal Soc. Chem. 8, 4634 (2018)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Dr. Selim ACAR (Gazi University) for conductance and capacitance measurements of the samples.

Funding

This work was financially supported by the Scientific Research Projects foundation of Gazi University (Grant Number FDK-2022-8080).

Author information

Authors and Affiliations

Authors

Contributions

PO performed investigation, experiment, formal analysis, visualization, writing–original draft, and writing-review and editing; NT performed visualization and writing-review and editing; SC contributed to supervision, resources, visualization, and writing-review and editing; NT contributed to supervision, visualization, and writing-review and editing; HK contributed to supervision, resources, visualization, and writing-review and editing.

Corresponding author

Correspondence to Pınar Oruç.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oruç, P., Turan, N., Cavdar, S. et al. Investigation of dielectric properties of amorphous, anatase, and rutile TiO2 structures. J Mater Sci: Mater Electron 34, 498 (2023). https://doi.org/10.1007/s10854-023-09924-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-09924-4

Navigation