Skip to main content
Log in

Transition metal vanadates (MVO; M=Bi, Fe, Zn) synthesized by a hydrothermal method for efficient photocatalysis

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Metal vanadates (MVO) have attained a lot of consideration in recent years because of their unique structural and photoluminescence features. These metal vanadates adopt structures with different phases depending on the magnitude of the bivalent present. Here, the hydrothermal approach was used to synthesize three different phases of MVO (M=Bi, Fe, and Zn). After synthesis temperatures of 200 °C for 24 h, powders of BiVO4 (monoclinic), FeVO4 (anorthic), and ZnV2O4 (cubic) were produced. Scherrer’s evaluation confirmed that these crystallites were nanosized. According to BET data, ZnV2O4 has a sufficient surface area. The bandgap transition of metal vanadates is of the order of FeVO4 < BiVO4 < ZnV2O4 based on UV–Vis spectra. These MVO have interesting optical properties, and photoluminescence (PL) analysis revealed blue-green emission peaks in PL spectra and other obtained results exposed that crystallinity, shape, and size of the metal vanadates have a significant impact on the photocatalytic activity. The photocatalytic degradation of crystal violet (C25H30ClN3l) dye over these hydrothermally synthesized MVO was investigated. In this research, ZnV2O4 spinel oxide offered the best photodegradation efficiency of crystal violet at 99.92% within 60 min under visible light irradiation. The photocatalytic mechanism of this MVO was postulated and carefully reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All the data generated or analyzed during this study have been included in this published article.

References

  1. P.L. Ngo et al., Pathway, classification and removal efficiency of microplastics in wastewater treatment plants. Environ. Pollut. 255, 113326 (2019)

    Article  CAS  Google Scholar 

  2. S. Ahmed et al., Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater. J. Hazard. Mater. 416, 125912 (2021)

    Article  CAS  Google Scholar 

  3. A.H. Shah, M.A. Rather, Pharmaceutical residues: new emerging contaminants and their mitigation by nano-photocatalysis. Adv. Nano. Res. 10(4), 397–414 (2021)

    Google Scholar 

  4. P. Singh et al., Review on various strategies for enhancing photocatalytic activity of graphene based nanocomposites for water purification. Arab. J. Chem. 13(1), 3498–3520 (2020)

    Article  CAS  Google Scholar 

  5. G. Chandrappa et al., Hydrothermal synthesis of vanadium oxide nanotubes from V2O5 gels. Catal. Today 78(1–4), 85–89 (2003)

    Article  CAS  Google Scholar 

  6. W.G. Menezes et al., V2O5 nanoparticles obtained from a synthetic bariandite-like vanadium oxide: synthesis, characterization and electrochemical behavior in an ionic liquid. J. Coll. Interface Sci. 337(2), 586–593 (2009)

    Article  CAS  Google Scholar 

  7. X.-C. Dai et al., Electrochemically anodized one-dimensional semiconductors: a fruitful platform for solar energy conversion. J. Phys.: Energy 17, 022002 (2019)

    Google Scholar 

  8. K. Kannan et al., Nanostructured metal oxides and its hybrids for photocatalytic and biomedical applications. Adv. Coll. Interface. Sci. 281, 102178 (2020)

    Article  CAS  Google Scholar 

  9. M.S.S. Danish et al., Photocatalytic applications of metal oxides for sustainable environmental remediation. Metals 11(1), 80 (2021)

    Article  CAS  Google Scholar 

  10. R. Andreozzi et al., Advanced oxidation processes (AOP) for water purification and recovery. Catal. Today 53(1), 51–59 (1999)

    Article  CAS  Google Scholar 

  11. Y.-J. Zhu, F. Chen, Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chem. Rev. 114(12), 6462–6555 (2014)

    Article  CAS  Google Scholar 

  12. A. Heydari et al., Nanorods of FeVO4: An efficient heterogeneous catalyst for chemoselective oxidation of benzylic alcohols. Inorg. Nano-Metal Chem. 47(2), 248–255 (2017)

    Article  CAS  Google Scholar 

  13. G. Fey, K. Wang, S. Yang, New inverse spinel cathode materials for rechargeable lithium batteries. J. Power Sources 68(1), 159–165 (1997)

    Article  CAS  Google Scholar 

  14. M. Mosleh, Nanocrystalline iron vanadate: facile morphology-controlled preparation, characterization and investigation of optical and photocatalytic properties. J. Mater. Sci.: Mater. Electron. 28(8), 5866–5871 (2017)

    CAS  Google Scholar 

  15. R. Monsef, M. Salavati-Niasari, Hydrothermal architecture of Cu5V2O10 nanostructures as new electro-sensing catalysts for voltammetric quantification of mefenamic acid in pharmaceuticals and biological samples. Biosens. Bioelectron. 178, 113017 (2021)

    Article  CAS  Google Scholar 

  16. X. Zhang et al., Co2V2O7 particles with intrinsic multienzyme mimetic activities as an effective bioplatform for ultrasensitive fluorometric and colorimetric biosensing. ACS Appl. Bio Mater. 3(3), 1469–1480 (2020)

    Article  CAS  Google Scholar 

  17. G. Kesavan, V. Vinothkumar, S.-M. Chen, Sonochemical synthesis of copper vanadate nanoparticles for the highly selective voltammetric detection of antibiotic drug ornidazole. J. Alloy. Compd. 867, 159019 (2021)

    Article  CAS  Google Scholar 

  18. M. Tayyab et al., Simultaneous hydrogen production with the selective oxidation of benzyl alcohol to benzaldehyde by a noble-metal-free photocatalyst VC/CdS nanowires. Chin. J. Catal. 43(4), 1165–1175 (2022)

    Article  CAS  Google Scholar 

  19. G. Pekar et al., Structural, optical and magnetic properties of stencil-free printed ZnO layers doped with Fe2+ and Fe3+ ions. Mater. Chem. Phys. 276, 125329 (2022)

    Article  CAS  Google Scholar 

  20. Z. Feng et al., Self-activated and bismuth-related photoluminescence in rare-earth vanadate, niobate, and tantalate series—a first-principles study. Inorg. Chem. 60(21), 16614–16625 (2021)

    Article  CAS  Google Scholar 

  21. K. Anwar, F.K. Naqvi, S. Beg, Synthesis of tetragonally stabilized lanthanum doped bismuth vanadium oxide nanoparticles and its enhanced visible light induced photocatalytic performance. Phase Transitions 95(1), 64–79 (2022)

    Article  CAS  Google Scholar 

  22. N.G. Chernorukov et al., A family of uranyl oxide hydrate phases with bivalent cations [M II (H 2 O) 4][(UO 2) 3 O 3 (OH) 2]· H 2 O (M II–Mn Co, Ni, Zn): synthesis, characterization and chemical stability in aqueous solutions. New J. Chem. 45(22), 9922–9935 (2021)

    Article  CAS  Google Scholar 

  23. M.M. Sajid et al., Hydrothermal fabrication of monoclinic bismuth vanadate (m-BiVO4) nanoparticles for photocatalytic degradation of toxic organic dyes. Mater. Sci. Eng., B 242, 83–89 (2019)

    Article  CAS  Google Scholar 

  24. M.M. Sajid et al., Facile synthesis of Se/BiVO4 heterojunction composite and evaluation of synergetic reaction mechanism for efficient photocatalytic staining of organic dye pollutants in wastewater under visible light. J. Mater. Sci.: Mater. Electron. 31(22), 19599–19612 (2020)

    Google Scholar 

  25. S. Tokunaga, H. Kato, A. Kudo, Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties. Chem. Mater. 13(12), 4624–4628 (2001)

    Article  CAS  Google Scholar 

  26. R. Yang et al., One-step preparation (3D/2D/2D) BiVO4/FeVO4@ rGO heterojunction composite photocatalyst for the removal of tetracycline and hexavalent chromium ions in water. Chem. Eng. J. 390, 124522 (2020)

    Article  CAS  Google Scholar 

  27. H.-Q. Jiang et al., Fabrication and photoactivities of spherical-shaped BiVO4 photocatalysts through solution combustion synthesis method. J. Eur. Ceram. Soc. 28(15), 2955–2962 (2008)

    Article  CAS  Google Scholar 

  28. C. Hong et al., Comprehensive study of the growth mechanism and photoelectrochemical activity of a BiVO4/Bi2S3 nanowire composite. ACS Appl. Mater. Interfaces. 12(35), 39713–39719 (2020)

    Article  CAS  Google Scholar 

  29. M.M. Sajid et al., Photocatalytic performance of ferric vanadate (FeVO4) nanoparticles synthesized by hydrothermal method. Mater. Sci. Semicond. Process. 129, 105785 (2021)

    Article  CAS  Google Scholar 

  30. M.M. Sajid et al., Morphological effects on the photocatalytic performance of FeVO4 nanocomposite. Nano-Structures & Nano-Objects 22, 100431 (2020)

    Article  CAS  Google Scholar 

  31. L.M.Z. De Juan-Corpuz et al., Porous ZnV2O4 nanowire for stable and high-rate lithium-ion battery anodes. ACS Applied Nano Materials 2(7), 4247–4256 (2019)

    Article  Google Scholar 

  32. J. Duan et al., Construction of columnar cactus-like 2D/1D CdxCu1-xS@ CuO shell-core structure photocatalyst for the reduction of CO2 to methanol. Opt. Mater. 115, 111016 (2021)

    Article  CAS  Google Scholar 

  33. F. Duan et al., Template-free synthesis of ZnV2O4 hollow spheres and their application for organic dye removal. Appl. Surf. Sci. 258(1), 189–195 (2011)

    Article  CAS  Google Scholar 

  34. S. Kawaguchi, Orbital order and phase transitions in vanadium spinels. Phys. Rev. B 87, 054432 (2013)

    Google Scholar 

  35. Krimmel, A., Electronically highly correlated ternary transition metal oxides. 2005: diplom. de.

  36. C. Carrero et al., Critical literature review of the kinetics for the oxidative dehydrogenation of propane over well-defined supported vanadium oxide catalysts. ACS Catal. 4(10), 3357–3380 (2014)

    Article  CAS  Google Scholar 

  37. Y. He et al., Influence of catalyst synthesis method on selective catalytic reduction (SCR) of NO by NH3 with V2O5-WO3/TiO2 catalysts. Appl. Catal. B 193, 141–150 (2016)

    Article  CAS  Google Scholar 

  38. B.M. Weckhuysen, D.E. Keller, Chemistry, spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis. Catal. Today 78(1–4), 25–46 (2003)

    Article  CAS  Google Scholar 

  39. M.M. Sajid et al., Visible light assisted photocatalytic degradation of crystal violet dye and electrochemical detection of ascorbic acid using a BiVO 4/FeVO 4 heterojunction composite. RSC Adv. 8(42), 23489–23498 (2018)

    Article  CAS  Google Scholar 

  40. M.M. Sajid et al., Study of the interfacial charge transfer in bismuth vanadate/reduce graphene oxide (BiVO4/rGO) composite and evaluation of its photocatalytic activity. Res. Chem. Intermed. 46(2), 1201–1215 (2020)

    Article  CAS  Google Scholar 

  41. F.K. Butt et al., Synthesis, evolution and hydrogen storage properties of ZnV2O4 glomerulus nano/microspheres: a prospective material for energy storage. Int. J. Hydrogen Energy 39(15), 7842–7851 (2014)

    Article  CAS  Google Scholar 

  42. X. Zhu et al., Nanophase ZnV2O4 as stable and high capacity Li insertion electrode for Li-ion battery. Curr. Appl. Phys. 15(4), 435–440 (2015)

    Article  Google Scholar 

  43. M. Umar et al., Rationally designed La and Se co-doped bismuth ferrites with controlled bandgap for visible light photocatalysis. RSC Adv. 9(30), 17148–17156 (2019)

    Article  CAS  Google Scholar 

  44. M.M. Sajid et al., Construction of 1T-MoS 2 quantum dots-interspersed (Bi 1–x Fe x) VO 4 heterostructures for electron transport and photocatalytic properties. RSC Adv. 11(22), 13105–13118 (2021)

    Article  CAS  Google Scholar 

  45. S. Irfan et al., The gadolinium (Gd3+) and Tin (Sn4+) Co-doped BiFeO3 nanoparticles as new solar light active photocatalyst. Sci. Rep. 7(1), 1–12 (2017)

    Article  CAS  Google Scholar 

  46. N.A. Shad et al., Photocatalytic investigation of cadmium oxide nanosheets prepared by hydrothermal method. Arabian J. Sci. Eng. (2019). https://doi.org/10.1007/s13369-019-03897-5

    Article  Google Scholar 

  47. N.A. Shad et al., Photocatalytic degradation performance of cadmium tungstate (CdWO4) nanosheets-assembly and their hydrogen storage features. Ceram. Int. (2019). https://doi.org/10.1016/j.ijhydene.2021.05.211

    Article  Google Scholar 

  48. Q.A. Alsulami et al., Preparation of highly efficient sunlight driven photodegradation of some organic pollutants and H2 evolution over rGO/FeVO4 nanocomposites. Int. J. Hydrogen Energy 46(54), 27349–27363 (2021)

    Article  CAS  Google Scholar 

  49. Y.M. Hunge et al., Visible light-assisted photocatalysis using spherical-shaped bivo4 photocatalyst. Catalysts 11(4), 460 (2021)

    Article  CAS  Google Scholar 

  50. M. Tahir, Hierarchical 3D VO2/ZnV2O4 microspheres as an excellent visible light photocatalyst for CO2 reduction to solar fuels. Appl. Surf. Sci. 467, 1170–1180 (2019)

    Article  Google Scholar 

  51. F.F. Abdi et al., Spray-deposited Co-Pi Catalyzed BiVO 4: a low-cost route towards highly efficient photoanodes. MRS Online Proc. Lib. Archive (2012). https://doi.org/10.1557/opl.2012.811

    Article  Google Scholar 

  52. Y. Liu et al., Single-atom Pt loaded zinc vacancies ZnO–ZnS induced type-V electron transport for efficiency photocatalytic h2 evolution. Solar Rrl 5(11), 2100536 (2021)

    Article  CAS  Google Scholar 

  53. J. Deng et al., FeVO4 as a highly active heterogeneous Fenton-like catalyst towards the degradation of orange II. Appl. Catal. B 84(3–4), 468–473 (2008)

    Article  CAS  Google Scholar 

  54. S.A. Bakar, C. Ribeiro, An insight toward the photocatalytic activity of S doped 1-D TiO2 nanorods prepared via novel route: as promising platform for environmental leap. J. Mol. Catal. A: Chem. 412, 78–92 (2016)

    Article  Google Scholar 

  55. M.M. Sajid et al., Platinum doped bismuth vanadate (Pt/BiVO4) for enhanced photocatalytic pollutant degradation using visible light irradiation. J. Mater. Sci.: Mater. Electron. (2022). https://doi.org/10.1007/s10854-022-08431-2

    Article  Google Scholar 

  56. W. Tress, Perovskite solar cells on the way to their radiative efficiency limit–insights into a success story of high open-circuit voltage and low recombination. Adv. Energy Mater. 7(14), 1602358 (2017)

    Article  Google Scholar 

  57. S. Irfan et al., Band-gap engineering and enhanced photocatalytic activity of Sm and Mn doped BiFeO3 nanoparticles. J. Am. Ceram. Soc. 100(1), 31–40 (2017)

    Article  CAS  Google Scholar 

  58. M. Kiani, S. Rizwan, S. Irfan, Facile synthesis of a BiFeO3/nitrogen-doped graphene nanocomposite system with enhanced photocatalytic activity. J. Phys. Chem. Solids 121, 8–16 (2018)

    Article  CAS  Google Scholar 

  59. M.M. Sajid et al., Preparation and characterization of Vanadium pentoxide (V2O5) for photocatalytic degradation of monoazo and diazo dyes. Surfaces Interfaces (2020). https://doi.org/10.1016/j.surfin.2020.100502

    Article  Google Scholar 

  60. M.M. Sajid et al., Synthesis of novel visible light assisted Pt doped zinc vanadate (Pt/Zn4V2O9) for enhanced photocatalytic properties. Chem. Phys. 539, 110980 (2020)

    Article  CAS  Google Scholar 

  61. M.M. Sajid et al., Generation of strong oxidizing radicals from plate-like morphology of BiVO4 for the fast degradation of crystal violet dye under visible light. Appl. Phys. A 126(4), 314 (2020)

    Article  CAS  Google Scholar 

  62. S. Irfan et al., Enhanced photocatalytic activity of La 3+ and Se 4+ co-doped bismuth ferrite nanostructures. J. Mater. Chem. A 5(22), 11143–11151 (2017)

    Article  CAS  Google Scholar 

  63. M. Tayyab et al., One-pot in-situ hydrothermal synthesis of ternary In2S3/Nb2O5/Nb2C Schottky/S-scheme integrated heterojunction for efficient photocatalytic hydrogen production. J. Coll. Interface Sci. 628, 500–512 (2022)

    Article  CAS  Google Scholar 

  64. M.M. Sajid et al., Facile synthesis of Zinc vanadate Zn3 (VO4) 2 for highly efficient visible light assisted photocatalytic activity. J. Alloy. Compd. 775, 281–289 (2019)

    Article  CAS  Google Scholar 

  65. B. Zhang et al., Quantitative investigation into the enhancing utilization efficiency of H2O2 catalyzed by FeOCl under visible light. J. Photochem. Photobiol., A 386, 112072 (2020)

    Article  CAS  Google Scholar 

  66. M. Mittal, M. Sharma, O. Pandey, Fast and quick degradation properties of doped and capped ZnO nanoparticles under UV–Visible light radiations. Sol. Energy 125, 51–64 (2016)

    Article  CAS  Google Scholar 

  67. M.M. Sajid et al., Generation of strong oxidizing radicals from plate-like morphology of BiVO4 for the fast degradation of crystal violet dye under visible light. Appl. Phys. A 126(4), 1–12 (2020)

    Article  Google Scholar 

  68. M.Y.A. Khan et al., Visible light photocatalytic degradation of crystal violet dye and electrochemical detection of ascorbic acid & glucose using BaWO4 nanorods. Mater. Res. Bull. 104, 38–43 (2018)

    Article  Google Scholar 

  69. M.K. Seery et al., Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis. J. Photochem. Photobiol., A 189(2–3), 258–263 (2007)

    Article  CAS  Google Scholar 

  70. S. Adhikari et al., Visible light assisted improved photocatalytic activity of combustion synthesized spongy-ZnO towards dye degradation and bacterial inactivation. RSC Adv. 6(83), 80086–80098 (2016)

    Article  Google Scholar 

  71. S. Senthilkumaar, K. Porkodi, Heterogeneous photocatalytic decomposition of crystal violet in UV-illuminated sol–gel derived nanocrystalline TiO2 suspensions. J. Coll. Interface Sci. 288(1), 184–189 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Muhammad Munir Sajid thanks Dr. Zhengjun Zhang of Tsinghua University in Beijing, China, for his assistance with characterization procedures. Dr. Muhammad Munir Sajid also acknowledges the financial support by the State Scholarship Fund of China Scholarship Council (Grant No. 201808410144), the National Natural Science Foundation of China (Grant No. 51202107), and the Foundation of Henan Educational Committee (Grant No. 20A480003).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

MMS contributed to methodology, material experiments, writing original draft preparation, material characterization, photocatalysis data analysis, and investigation; HA contributed to reviewing, editing, conceptualization, methodology, and sources. HZ contributed to material characterization, reviewing, and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Hasan Assaedi.

Ethics declarations

Conflict of interest

The authors have no conflicting interests that are relevant to the content of this work to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajid, M.M., Assaedi, H. & Zhai, H. Transition metal vanadates (MVO; M=Bi, Fe, Zn) synthesized by a hydrothermal method for efficient photocatalysis. J Mater Sci: Mater Electron 34, 539 (2023). https://doi.org/10.1007/s10854-023-09923-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-09923-5

Navigation