Skip to main content
Log in

The influences of current density on chemical composition and magnetic properties of FeNix film prepared by electrodeposition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Soft magnetic film with high saturation magnetization (Ms) and low coercivity (Hc) is a critical class of material for RF inductors, which can enhance the inductance when inserted into film inductor. In this study, a series of micron-scale FeNix film are prepared via an electroplating process. The phase and element composition of the as-prepared FeNix films are analyzed through the X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS), respectively. Results demonstrate that the iron nickel ratio of FeNix films can be adjusted by controlling the current density. The higher current density caused high nickel content, which may controllably prepare a series of micro-scale FeNix film. Moreover, SEM images and AFM photograph show that the films have no obvious defects and have a small roughness. We also found that the micron-scale FeNix film (~ 2.5 μm) presents high saturation magnetization (Ms = 1289.0 emu/cm3) and low coercivity (Hc = 76.8 A/m), which is feasible for magnetic core of RF inductors. Also, the electroplating method that preparing micro-scale FeNix film with controllable elemental composition can provide a referential experience for other soft magnetic film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. L.Y. Gao, Z.Q. Liu, Electroplating low coercivity nanocrystalline Fe-Ni magnetic cores for high performance on-chip microinductor. LEEE Trans. Magn. 58, 1–7 (2022)

    Google Scholar 

  2. Y.H. He, Z.P. Zhang, R.X. Wu, W. Guo, H.W. Zhang, F.M. Bai, On-chip coupled inductors with a novel spliced anisotropic and isotropic magnetic core for inductance and coupling enhancement. Solid State Electron. 164, 107699 (2020)

    Article  CAS  Google Scholar 

  3. H. Wu, M. Khdour, P. Apsangi, H.B. Yu, High-frequency magnetic thin-film inductor integrated on flexible organic substrates. LEEE Trans. Magn. 53, 1–7 (2017)

    CAS  Google Scholar 

  4. H. Liang, L. Zhang, H. Wu, Exploration of twin-modified grain boundary engineering in metallic copper predominated electromagnetic wave absorber. Small 18, e2203620 (2022)

    Article  Google Scholar 

  5. H. Liang, H. Xing, M. Qin, H. Wu, Bamboo-like short carbon fibers@Fe3O4@phenolic resin and honeycomb-like short carbon fibers@Fe3O4@FeO composites as high-performance electromagnetic wave absorbing materials. Compos Part A 135, 105959 (2020)

    Article  CAS  Google Scholar 

  6. A. Ammouri, H. Belloumi, T. Ben Salah, F. Kourda, Experimental Analysis of Planar Spiral Inductors. In: 2014 International Conference on Electrical Sciences and Technologies in Maghreb (Cistem). 1–5 (2014)

  7. Q.R. Xiao, T.X. Luo, Y.L. Shi, D.W. Chen, H.B. Ye, S.J. Hu, Z. Ren, Simple and Accurate Radio Frequency Inductance Expression for On-chip Planar Spiral Inductors. Isape 2008: In: The 8th International Symposium on Antennas, Propagation and Em Theory, Proceedings, Vols 1–3. 1025–1028 (2008)

  8. J.M. Lopez-Villegas, N. Vidal, J.A. del Alamo, Optimized toroidal inductors versus planar spiral inductors in multilayered technologies. LEEE Trans. Microw Theory. 65, 423–431 (2017)

    Article  Google Scholar 

  9. V. Korenivski, GHz magnetic film inductors. J Magn Magn Mater. 215–216, 800–806 (2000)

    Article  Google Scholar 

  10. C.R. Sullivan, Integrating Magnetics for on-Chip Power: Challenges and Opportunities. IEEE Cust. Integr. Cir. 15, 291–298 (2009)

    Google Scholar 

  11. N. Wang, T. O’Donnell, S. Roy, M. Brunet, P. McCloskey, S.C. O’Mathuna, High-frequency micro-machined power inductors. J Magn Magn Mater. 290–291, 1347–1350 (2005)

    Article  Google Scholar 

  12. D. Mishra, P.M. Raj, R. Tummala, Design, fabrication and characterization of thin power inductors with multilayered ferromagnetic-polymer composite structures. Microelectron Eng. 160, 34–38 (2016)

    Article  CAS  Google Scholar 

  13. W. Wang, Y. Chen, G.H. Yue, K. Sumiyama, T. Hihara, D.L. Peng, Magnetic softness and high-frequency characteristics of Fe65Co35-O alloy films. J. Appl. Phys. 106, 013912 (2009)

    Article  Google Scholar 

  14. T. O’Donnell, N. Wang, S. Kulkarni, R. Meere, F.M.F. Rhen, S. Roy, S.C. O’Mathuna, Electrodeposited anisotropic NiFe 45/55 thin films for high-frequency micro-inductor applications. J. Magn .Magn. Mater. 322, 1690–1693 (2010)

    Article  Google Scholar 

  15. D. Dinulovic, M. Kaiser, A. Gerfer, O. Opitz, M.C. Wurz, L. Rissing, Microtransformer with closed Fe-Co magnetic core for high frequency power applications. J. Appl. Phys. 115, 17a317 (2014)

    Article  Google Scholar 

  16. G.Y. Zhou, W.H. Zhang, D. He, X.X. Li, S.X. Wang, Y. Hong, Y.M. Chen, C. Wang, W. He, H. Miao, J.Q. Zhou, A novel structured spiral planar embedded inductor: electroless-plating NiCoP alloy on copper coil as magnetic core. J. Magn. Magn. Mater. 489, 165363 (2019)

    Article  CAS  Google Scholar 

  17. X.L. Xu, G.N. Feng, J.T. Liu, R.G. Zhu, X.Y. Yang, M.C. Liu, X.D. Xiong, X. He, J.F. Luo, C. Feng, G.H. Yu, Tailoring the magnetic properties of sputtered amorphous CoZrTa/metal-oxide (MO) by interfacial oxygen migration. J. Appl. Phys. 128, 165303 (2020)

    Article  CAS  Google Scholar 

  18. P. Tiberto, N. Villar Alzola, A.V. Svalov, N.S. Mayura, N.A. Kulesh, A. Larrañaga, G.V. Kurlyandskaya, M. Affronte, F. Casoli, C. de Julián Fernández, G. Gubbiotti, C. Marquina, F. Pratt, M. Solzi, S. Tacchi, P. Vavassori, Structure and magnetic properties of FeNi/Ti sputtered multilayers. EPJ. Web Conf. 40, 17002 (2013)

    Article  Google Scholar 

  19. T. Yanai, J. Kaji, K. Koda, K. Takashima, M. Nakano, H. Fukunaga, Magnetic properties of exchange-coupled Fe-Ni/Fe22Ni78 double-layered thick films. LEEE Trans. Magn. 54, 1–3 (2018)

    Article  Google Scholar 

  20. M. Kumar, V.K. Verma, V.R. Singh, Magnetic anisotropic of thermally evaporated FeNi thin film: a soft X-ray magnetic circular dichroism study. Surf Interface Anal. 53, 808–813 (2021)

    Article  CAS  Google Scholar 

  21. F.E. Rasmussen, J.T. Ravnkilde, P.T. Tang, O. Hansen, S. Bouwstra, Electroplating and characterization of cobalt–nickel–iron and nickel–iron for magnetic microsystems applications. Sensor Actuat A. 92, 242–248 (2001)

    Article  CAS  Google Scholar 

  22. T. Shimokawa, T. Yanai, K. Takahashi, M. Nakano, K. Suzuki, H. Fukunaga, Soft magnetic properties of electrodeposited Fe-Ni films prepared in citric acid based bath. LEEE Trans. Magn. 48, 2907–2909 (2012)

    Article  CAS  Google Scholar 

  23. N. Wang, T. O’Donnell, S. Roy, P. McCloskey, C. O’Mathuna, Micro-inductors integrated on silicon for power supply on chip. J. Magn. Magn. Mater. 316, E233–E237 (2007)

    Article  CAS  Google Scholar 

  24. V. Pulijala, A. Syed, Comparison of the effects of 60 nm and 96 nm thick patterned permalloy thin films on the performance of on-chip spiral inductors. J. Magn. Magn. Mater. 419, 245–248 (2016)

    Article  CAS  Google Scholar 

  25. D. Lan, H. Zhou, H. Wu, A polymer sponge with dual absorption of mechanical and electromagnetic energy. J, Colloid Interf. Sci. 633, 92–101 (2022)

    Article  Google Scholar 

  26. S. Zhang, B. Cheng, Z. Jia, Z. Zhao, X. Jin, Z. Zhao, G. Wu, The art of framework construction: hollow-structured materials toward high-efficiency electromagnetic wave absorption. Adv. Compos. Hybrid Mater. 5, 1658–1698 (2022)

    Article  Google Scholar 

  27. X. Wei, W. Chen, N. Liu, H. Fan, Dendritic FeNi3 phase grown on copper foil by electrodeposition as electrocatalyst for efficient oxygen evolution reaction. J. Alloys Compd. 830, 154708 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Project of 9th Institute of China Electronics Technology Group Corporation (No. 2022SK-007), and the Funded by the Project of State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology (No. 20fksy23,21fksy27), and supported by Sichuan Science and Technology Plan (No. 2021YFG0223).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

ST: Conceptualization, Methodology, Formal analysis, Resources, Data Curation, Writing—Original Draft. QN: Investigation, Formal analysis. HC: Investigation. JL: Investigation. YZ: Investigation. BD: Supervision. FX: Formal analysis, Writing—Review & Editing. JL: Funding acquisition. YR: Resources, Supervision, Writing—Review & Editing.

Corresponding author

Correspondence to Yong Ren.

Ethics declarations

Conflict of interest

All co-authors agreed to this submission, which has not been considered by any other journal.

Ethical standards

The full paper has not been submitted or published elsewhere and will not be submitted elsewhere until the journal editorial process is complete.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, S., Nie, Q., Chen, H. et al. The influences of current density on chemical composition and magnetic properties of FeNix film prepared by electrodeposition. J Mater Sci: Mater Electron 34, 530 (2023). https://doi.org/10.1007/s10854-023-09888-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-09888-5

Navigation