Skip to main content
Log in

Effect of Mn doping on structural, optical and magnetic properties of ZnO films fabricated by sol–gel spin coating method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We have fabricated undoped ZnO and Mn-doped ZnO thin films on glass substrates using sol–gel spin coating method and investigated their structural, optical, magnetic and magnetoresistance properties depending on the Mn doping ratio. X-ray diffraction (XRD) patterns showed that all the films under study are predominantly crystalized in a single-phase wurtzite structure. Scanning electron microscope (SEM) images revealed that the films become more homogeneous, continuous and pinhole-free coatings as the Mn content of the films increases. Optical characterizations by UV–visible spectrometer indicated that transmittance spectra of all films have a high transmittance above 85% in visible region, while they show the absorbance spectra in 300–400 nm range. In addition, it was observed that the optical energy band edges shift to red with increasing Mn content, due to probably increasing the carrier concentration. The refractive index and the dielectric constant are also affect by the Mn content. Magnetic measurements by vibrating sample magnetometer showed that the film magnetic properties change from diamagnetic to ferromagnetic as the Mn content increases. Furthermore, it was found that the magnetoresistance measurements support their magnetic behavior of the films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within the article.

References

  1. M. Yan, M. Lane, C.R. Kannewurf, R.P.H. Chang, Appl. Phys. Lett. 78, 2342 (2001)

    Article  CAS  Google Scholar 

  2. A.J. Verkey, A.F. Fort, Thin Solid Films 239, 211 (1994)

    Article  Google Scholar 

  3. M.S. Tokumoto, A. Smith, C.V. Santilli, S.H. Pulcinelli, A.F. Craievich, E. Elkaim, A. Traverse, V. Briois, Thin Solid Films 416, 284 (2002)

    Article  CAS  Google Scholar 

  4. K. Matsubara, P. Fons, K. Iwata, A. Yamada, K. Sakurai, H. Tampo, S. Niki, Thin Solid Films 431–432, 369 (2003)

    Article  Google Scholar 

  5. K.L. Chopra, S.R. Das, Thin Film Solar Cells, p. 346. Plenum Press, New York (1983)

  6. S. Major, A. Banerjee, K.L. Chopra, Thin Solid Films 143, 19 (1986)

    Article  CAS  Google Scholar 

  7. K.L. Chopra, S. Major, D.K. Pandya, Thin Solid Films 102, 1 (1983)

    Article  CAS  Google Scholar 

  8. X. Sun, H. Kwork, Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition. J. Appl. Phys. 86, 408–411 (1999). https://doi.org/10.1063/1.370744

    Article  CAS  Google Scholar 

  9. C.M. Vladut, S. Mihaiu, E. Tenea, S. Preda, J.M. Calderon-Moreno, M. Anastasescu, H. Stroescu, I. Atkinson, M. Gartner, C. Moldovan, M. Zaharescu, Optical and piezoelectric properties of Mn-doped ZnO films deposited by sol–gel and hydrothermal methods. J. Nanomater. (2019). https://doi.org/10.1155/2019/6269145

  10. P. Soundarrajan, K. Sethuraman, Interface energy barrier tailoring themorphological structure evolution from ZnO nano/micro rod arrays to microcrystalline thin films by Mn doping. RSC Adv. 5, 44222–44233 (2015). https://doi.org/10.1039/c5ra06235g

  11. M. Willander, O. Nur, Q.X. Zhao, L.L. Yang, M. Lorenz, B.Q. Cao, J.Z. Perez, C. Czekalla, G. Zimmermann, M. Grundmann, Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers. Nanotechnology 20(33), 1–40 (2009). https://doi.org/10.1088/0957-4484/20/33/332001

    Article  CAS  Google Scholar 

  12. A. Raidou, M. Aggour, A. Qachaou, L. Laanab, M. Fahoume, Preparation and characterization of ZnO thin films deposited by Silar method. J. Condens. Mater. 12(2), 125–130 (2010)

    Google Scholar 

  13. H. Kim, A. Piqué, J.S. Horwitz, H. Murata, Z.H. Kafafi, C.M. Gilmore, D.B. Chrisey, Effect of aluminum doping on zinc oxide thin films grown by pulsed laser deposition for organic light-emitting devices. Thin Solid Films 377(378), 798–802 (2000). https://doi.org/10.1016/S0040-6090(00)01290-6

    Article  Google Scholar 

  14. A. LópezSuárez, D. Acosta, C. Magaña, F. Hernández, Optical, structural and electrical properties of ZnO thin films doped with mn. J. Mater. Sci. Mater. Electron. 31, 7389–7397 (2020). https://doi.org/10.1007/s10854-019-02830-8

    Article  CAS  Google Scholar 

  15. R.K. Sharma, S. Patel, K.C. Pargaien, Synthesis, characterization and properties of Mn-doped ZnO nanocrystals. Adv. Nat. Sci. Nanosci. Nanotechnol. 3(3), 1–5 (2012). https://doi.org/10.1088/2043-6262/3/3/035005

  16. S. Benramache, A. Arif, O. Belahssen, A. Guettaf, Study on the correlation between crystallite size and optical gap energy of doped ZnO thin film. J. Nanostruct. Chem. 3, 80 (2013). https://doi.org/10.1186/2193-8865-3-80

    Article  Google Scholar 

  17. Z. Ben Ayadi, L. El Mir, K. Djessas, S. Alaya, The properties of aluminum-doped zinc oxide thin films prepared by RF-magnetron sputtering from nanopowder targets. Mater. Sci. Eng. C 28(5–6). 613–617 (2008). https://doi.org/10.1016/j.msec.2007.10.006

    Article  CAS  Google Scholar 

  18. S. Fabbiyola, L. John Kennedy, U. Aruldoss, M. Bououdina, A.A. Dakhel, J. JudithVijaya, Synthesis of co-doped ZnO nanoparticles via co-precipitation: structural, optical and magnetic properties. Powder Technol. 286, 757–765 (2015). https://doi.org/10.1016/j.powtec.2015.08.054

    Article  CAS  Google Scholar 

  19. C.B. Fitzgerald, M. Venkatesan, J.G. Lunney, L.S. Dorneles, J.M.D. Coey, Cobalt-doped ZnO—a room temperature dilute magnetic semiconductor. Appl. Surf. Sci 247, 493–496 (2005). https://doi.org/10.1016/j.apsusc.2005.01.043

    Article  CAS  Google Scholar 

  20. B. Pal, P.K. Giri, Defect mediated magnetic interaction and high TC ferromagnetism in Co doped ZnO nanoparticles. J. Nanosci. Nanotechnol. 11, 1–8 (2011). https://doi.org/10.1166/jnn.2011.4293

    Article  CAS  Google Scholar 

  21. B. Pal, S. Dhara, P.K. Giri, D. Sarkar, Room temperature ferromagnetism with high magnetic moment and optical properties of Co doped ZnO nanorods synthesized by a solvothermal route. J. Alloys Compd. 615, 378–385 (2014). https://doi.org/10.1016/j.jallcom.2014.06.087

    Article  CAS  Google Scholar 

  22. H.-C. You, Y.-H. Lin, Investigation of the sol–gel method on the flexible ZnO device. Int. J. Electrochem. Sci. 7, 9085–9094 (2012)

    CAS  Google Scholar 

  23. S. Sharma, C. Periasamy, P. Chakrabarti, Thickness dependent study of RF sputtered ZnO thin films for optoelectronic device applications. Electron. Mater. Lett. 11, 1093–1101 (2015). https://doi.org/10.1007/s13391-015-4445-y

    Article  CAS  Google Scholar 

  24. E. Heredia, C. Bojorge, J. Casanova, H. Cánepa, A. Craievich, G. Kellermann, Nanostructured ZnO thin films prepared by sol–gel spin-coating. Appl. Surf. Sci 317, 19–25 (2014). https://doi.org/10.1016/j.apsusc.2014.08.046

    Article  CAS  Google Scholar 

  25. S. Balamurali, R. Chandramohan, N. Suriyamurthy, P. Parameswaran, M. Karunakaran, V. Dhanasekaran, T. Mahalingam, Optical and magnetic properties of Mn doped ZnO thin films grown by SILAR method. J. Mater. Sci. Mater. Electron. 24(6), 1782–1787 (2013). https://doi.org/10.1007/s10854-012-1012-2

    Article  CAS  Google Scholar 

  26. L. Znaidi, Sol–gel-deposited ZnO thin films: a review. Mater. Sci. Eng. B 174, 18–30 (2010). https://doi.org/10.1016/j.mseb.2010.07.001

    Article  CAS  Google Scholar 

  27. S.A. Kamaruddin, K.Y. Chan, H.K. Yow, M.Z. Sahdan, H. Saim, D. Knipp, Zinc oxide films prepared by sol–gel spin coating technique. Appl. Phys. A 104, 263–268 (2011). https://doi.org/10.1007/s00339-010-6121-2

    Article  CAS  Google Scholar 

  28. N. Bouchenak Khelladi, N.E. Chabane Sari, Optical properties of ZnO thin film. Adv. Mater. Sci. 13(1), 21–29 (2013). https://doi.org/10.2478/adms-2013-0003

    Article  CAS  Google Scholar 

  29. H.-J. Yen, G.-S. Liou, A facile approach towards optically isotropic, colorless, and thermoplastic polyimidothioethers with high refractive index. J. Mater. Chem. 20, 4080–4084 (2010). https://doi.org/10.1039/c000087f

    Article  CAS  Google Scholar 

  30. Z. Gültekin, M. Alper, C. Akay, M.C. Hacıismailoğlu, Design and construction of home-made spin coater for OLED production. Int. J. Electron. Device Phys. (2021). https://doi.org/10.35840/2631-5041/1711

    Article  Google Scholar 

  31. W. Schwarzacher, D.S. Lashmore, Giant magnetoresistance in electrodeposited films. IEEE Trans. Magn 32(4), 3133–3153 (1996). https://doi.org/10.1109/20.508379

    Article  CAS  Google Scholar 

  32. M. Alper, H. Kockar, M. Safak, M.C. Baykul, Comparison of Ni–Cu alloy films electrodeposited at low and high pH levels. J. Alloys Compd. 453, 1–2 (2008). https://doi.org/10.1016/j.jallcom.2006.11.066

    Article  CAS  Google Scholar 

  33. C. Peng, J. Guo, W. Yang, C. Shi, M. Liu, Y. Zheng, J. Xu, P. Chen, T. Huang, Y. Yang, Synthesis of three-dimensional flower-like hierarchical ZnO nanostructure and its enhanced acetone gas sensing properties. J. Alloys Compd. 654, 371–378 (2016). https://doi.org/10.1016/j.jallcom.2015.09.120

    Article  CAS  Google Scholar 

  34. L. Feng, Z. Xuan, H. Zhao et al., MnO2 prepared by hydrothermal method and electrochemical performance as anode for lithium-ion battery. Nanoscale Res. Lett. 9, 290 (2014). https://doi.org/10.1186/1556-276X-9-290

    Article  CAS  Google Scholar 

  35. A.K.M. Atique Ullah, A.K.M. Fazle Kibria, M. Akter, M.N.I. Khan, A.R.M. Tareq, S.H. Firoz, Oxidative degradation of Methylene Blue using Mn3O4 nanoparticles, Water Conserv. Sci. Eng. 1, 249–256 (2017). https://doi.org/10.1007/s41101-017-0017-3

    Article  Google Scholar 

  36. L.V. Stebounova, N.I. Gonzalez-Pech, T.M. Peters, V.H. Grassian, Physicochemical properties of air discharge-generated manganese oxide nanoparticles: comparison to welding fumes. Environ. Sci. Nano 5, 696–707 (2018). https://doi.org/10.1039/c7en01046j

    Article  CAS  Google Scholar 

  37. B. Yahmadi, O. Kamoun, B. Alhalaili, S. Alleg, R. Vidu, N.K. Turki, Physical investigations of (Co, Mn) Co-doped ZnO nanocrystalline films. Nanomaterials 10, 1–13 (2020). https://doi.org/10.3390/nano10081507

  38. S. Salam, M. Islam, A. Akram, Sol–gel synthesisof intrinsic and aluminium-doped zinc oxide thinfilms as transparent conducting oxides for thin filmsolar cells. Thin Solid Films 529, 242–247 (2013). https://doi.org/10.1016/j.tsf.2012.10.079

    Article  CAS  Google Scholar 

  39. M. Tanemura, P.K. Shishodia, Ferromagnetism in sol–gel derived ZnO:Mn nanocrystalline thin films. Adv. Mater. Lett. 7(2), 116–122 (2016). https://doi.org/10.5185/amlett.2016.5966

    Article  CAS  Google Scholar 

  40. S. Yang, Y. Zhang, Structural, optical and magnetic properties of Mn-doped ZnO thin films prepared by sol–gel method. J. Magn. Magn. Mater. 334, 52–58 (2013). https://doi.org/10.1016/j.jmmm.2013.01.026

    Article  CAS  Google Scholar 

  41. L. Xu, J. Su, Y. Chen, G. Zheng, S. Pei, T. Sun, J. Wang, M. Lai, Optical and structural properties of ZnO/ZnMgO composite thin films prepared by sol–gel technique. J. Alloys Compd. 548, 7–12 (2013). https://doi.org/10.1016/j.jallcom.2012.09.011

    Article  CAS  Google Scholar 

  42. A.K. Zak, M. Abrishami, W. Majid, R. Yousefi, S. Hosseini, Effect of annealing temperature on some structural and optical properties of ZnO nanoparticles prepared by a modified sol–gel combustion methode. Ceram. Int. 37, 393–398 (2011). https://doi.org/10.1016/j.ceramint.2010.08.017

    Article  CAS  Google Scholar 

  43. A.R. Ansari, S. Hussain, M. Imran, A. Al-Ghamdi, M.R. Chandan, Optical investigations of microwave induced synthesis of zinc oxide thin-film. Mater. Sci. (Poland) 36(2), 304–309 (2018). https://doi.org/10.1515/msp-2018-0041

    Article  CAS  Google Scholar 

  44. C. Aydın, The dispersion energy parameters, linear and nonlinear optical properties of transparent mn:ZnO nanolayers. Eur. Mech. Sci. 4(2), 82–89 (2020). https://doi.org/10.26701/ems.710165

    Article  Google Scholar 

  45. S. Sharma, C. Periasamy, P. Chakrabarti, Thickness dependent study of RF sputtered ZnO thin films for optoelectronic device applications. Electron. Mater. Lett. 11(6), 1093–1101 (2015). https://doi.org/10.1007/s13391-015-4445-y

    Article  CAS  Google Scholar 

  46. Z.N. Kayani, I. Shah, B. Zulfiqar, S. Riaz, S. Naseem, A. Sabah, Structural, optical and magnetic properties of nanocrystalline co-doped ZnO thin films grown by sol–gel. Z. Nat. 73(1a), 13–21 (2018). https://doi.org/10.1515/zna-2017-0302

    Article  CAS  Google Scholar 

  47. L. Wei, G. Wang, C. Chen, J. Liao, Z. Li, Enhanced visible light photocatalytic activity of ZnO nanowires doped with Mn2+ and Co2+ ions. Nanomaterials 19 7, 1–11 (2017). https://doi.org/10.3390/nano7010020

  48. V.K. Verma, N.K. Pandey, MnO2-ZnO hexagonal nanomaterials: characterization and high performance humidity sensing application. IJSRPAS 6, 69–79 (2018). https://doi.org/10.26438/ijsrpas/v6i6.6979

  49. Y. Wang, X. Hao, Z. Wang, M. Dong, L. Cui, Facile fabrication of Mn2+ doped ZnO photocatalysts by electrospinning. R. Soc. Open. Sci. 7, 191050–191057 (2020). https://doi.org/10.1098/rsos.191050

    Article  CAS  Google Scholar 

  50. H.A. Khawal, U.P. Gawai, K. Asokan, B.N. Dole, Modified structural, surface morphological and optical studies of Li3+ swift heavy ion irradiation on zinc oxide nanoparticles. RSV Adv. 6, 49068–49075 (2016). https://doi.org/10.1039/C6RA04803J

    Article  CAS  Google Scholar 

  51. K. Dhanshree, T. Elangovan, Synthesis and characterization of ZnO and Mn-doped nanoparticles. IJSR 4(11), 1816–1820 (2015). https://doi.org/10.21275/v4i11.nov151529

  52. O. Bilgili, The effect of Mn doping on the structural and optical properties of ZnO. Acta Phys. Pol. 136, 460–466 (2019). https://doi.org/10.12693/APhysPolA.136.460

    Article  CAS  Google Scholar 

  53. S. Roguai, A. Djelloul, C. Nouveau, T. Souier, A.A. Dakhel, M. Bououdina, Structure, microstructure and determination of optical constants from transmittance data of co-doped Zn0.90 Co0.05 M0.05 O (M = Al, Cu, Cd, Na) films. J. Alloys Compd. 599, 150–158 (2014). https://doi.org/10.1016/j.jallcom.2014.02.080

    Article  CAS  Google Scholar 

  54. Q.M. Al-Bataineh, M. Telfah, A.A. Ahmad, A.M. Alsaad, I.A. Qattan, H. Baaziz, Z. Charifi, A. Telfah, Synthesis, crystallography, microstructure, crystal defects, optical and optoelectronic properties of ZnO:CeO2 mixed oxide thin films. Photonics 7(112), 1–19 (2020). https://doi.org/10.3390/photonics7040112

    Article  CAS  Google Scholar 

  55. A.S. Hassanien, Studies on dielectric properties, opto-electrical parameters and electronic polarizability of thermally evaporated amorphous Cd50S50 – xSex thin films. J. Alloys Compd. 671, 566–578 (2016). https://doi.org/10.1016/j.jallcom.2016.02.126

    Article  CAS  Google Scholar 

  56. A.M. Alsaad, Q.M. Al-Bataineh, A.A. Ahmad, Z. Albataineh, A. Telfah, Optical band gap and refractive index dispersion parameters of boron-doped ZnO thin films: a novel derived mathematical model from the experimental transmission spectra. Optik 211, 164641–164653 (2020). https://doi.org/10.1016/j.ijleo.2020.164641

    Article  CAS  Google Scholar 

  57. B. Mehmood, M.I. Khan, M. Iqbal, A. Mahmood, W. Al-Masry, Structural and optical properties of Ti and Cu co-doped ZnO thin films for photovoltaic applications of dye sensitized solar cells. Int. J. Energy Res. 45 2, 1–15 (2020). https://doi.org/10.1002/er.5939

    Article  CAS  Google Scholar 

  58. A. Boukhachem, B. Ouni, M. Karyaoui, A. Madani, R. Chtourou, M. Amlouk, Structural, opto-thermal and electrical properties of ZnO:Mo sprayed thin films. Mater. Sci. Semicond. Process. 15(3), 282–292 (2012). https://doi.org/10.1016/j.mssp.2012.02.014

    Article  CAS  Google Scholar 

  59. M.M. A.Gadallah, El-Nahass, Structural, optical constants and photoluminescence of ZnO thin films grown by sol–gel spin coating, Adv. Condens. Matter Phys. 2013, 1–11 (2013). https://doi.org/10.1155/2013/234546

  60. X.L. Wang, K.H. Lai, A. Ruotolo, A comparative study on the ferromagnetic properties of undoped and Mn-doped ZnO. J. Alloys Compd. 542, 147–150 (2012). https://doi.org/10.1016/j.jallcom.2012.07.035

    Article  CAS  Google Scholar 

  61. C.L. Chien, J.Q. Xiao, J.S. Jiang, Giant negative magnetoresistance in granular ferromagnetic systems (invited). J. Appl. Phys. 73, 5309 (1993). https://doi.org/10.1063/1.353765

    Article  CAS  Google Scholar 

  62. P. Stamenov, M. Venkatesan, L.S. Dorneles, D. Maude, J.M.D. Coey, Magnetoresistance of Co-doped ZnO thin films. J. Appl. Phys. 99, 08M124 (2006). https://doi.org/10.1063/1.2172194

    Article  CAS  Google Scholar 

  63. S. Venkatesh, A. Baras, J.-S. Lee, I.S. Roqan, The magnetic ordering in high magnetoresistance Mn-doped ZnO thin films. AIP Adv. 6, 035019 (2016). https://doi.org/10.1063/1.4944954

    Article  CAS  Google Scholar 

  64. T.R. McGuire, R.I. Potter, Anisotropic magnetoresistance in ferromagnetic 3D allyos. IEEE Trans. Magn. (MAG-11) (1975). https://doi.org/10.1109/TMAG.1975.1058782

Download references

Acknowledgments

The authors would like to thank Bursa Technical University for XRD and SEM measurements.

Author information

Authors and Affiliations

Authors

Contributions

ZG helped in investigation, experimental design, data collection, data analysis, writing—original draft. MA performed investigation, methodology, data analysis, conceptualization, supervision, writing—review and editing. MCH and CA collected the data.

Corresponding author

Correspondence to Mürsel Alper.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gültekin, Z., Alper, M., Hacıismailoğlu, M.C. et al. Effect of Mn doping on structural, optical and magnetic properties of ZnO films fabricated by sol–gel spin coating method. J Mater Sci: Mater Electron 34, 438 (2023). https://doi.org/10.1007/s10854-023-09886-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-09886-7

Navigation