Skip to main content

Advertisement

Log in

Preparation of hierarchical porous carbon through one-step KOH activation of coconut shell biomass for high-performance supercapacitor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Here we report an effective and facile method for preparing porous carbons (CSCK-T-x) with highly developed hierarchical porosity for high-performance supercapacitor by one-step KOH activation of coconut shell carbon. The effects of carbonization temperature (T, °C) and KOH/C ratio (x) on the structure and electrochemical properties were studied systematically. As the KOH/C ratio and activation temperature increase, the SBET rapidly increases and then decreases and reaches a maximum (2143.6m2 g−1) at 800 °C with a KOH/C ratio of 2. Furthermore, CSCK-800-2 displayed abundant micropores and two concentrated mesopores at 4 nm and 14 nm. In a three-electrode test system, CSCK-800-2 exhibits a high specific capacitance of 317 F g−1 at a current density of 0.5 A g−1 and considerable rate retention of 68% at 20 A g−1. The symmetrical supercapacitor that was based on CSCK-800-2 showed a maximum energy density of 13.5 Wh kg−1 at 0.5 A g−1 with a superior cycling stability (99.7% of the capacitance retention after 10,000 cycles at 5 A g−1) in 6 M KOH electrolyte. The large specific surface area and unique hierarchical porosity of CSCK-800-2 enable it to have high ion-accessible surface and low-ion transport resistance. This one-step activation method provides an approach to convert biological waste into high-value hierarchical porous carbon material for electric double-layer capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. J. Deng, M.M. Li, Y. Wang, Biomass-derived carbon: synthesis and applications in energy storage and conversion. Green Chem. 18, 4824–4854 (2016)

    Article  CAS  Google Scholar 

  2. Z.L. Chen, Y.J. Gu, Y.L. Huo, X.Y. Ma, F.Z. Wu, Enhanced electrochemical performance of manganese-based metal organic frameworks-derived spinel LiMn2O4 cathode materials by improving the Mn3+ content and oxygen vacancies. J. Alloy Compd. (2022). https://doi.org/10.1016/j.jallcom.2022.165485

    Article  Google Scholar 

  3. L. Wei, G. Yushin, Nanostructured activated carbons from natural precursors for electrical double layer capacitors. Nano Energy 1, 552–565 (2012)

    Article  CAS  Google Scholar 

  4. L. Zhou, H. Cao, S.Q. Zhu, L.R. Hou, C.Z. Yuan, Hierarchical micro-/mesoporous N-and O-enriched carbon derived from disposable cashmere: a competitive cost-effective material for high-performance electrochemical capacitors. Green Chem. 17, 2373–2382 (2015)

    Article  CAS  Google Scholar 

  5. S. Haladkar, P. Alegaonkar, Preparation and performance evaluation of Carbon-Nano-Sphere for electrode double layer capacitor. Appl. Surf. Sci. 449, 500–506 (2018)

    Article  CAS  Google Scholar 

  6. S.H. Yue, H. Tong, L. Lu, W.W. Tang, W.L. Bai, F.Q. Jin, Q.W. Han, J.P. He, J. Liu, X.G. Zhang, Hierarchical NiCo2O4 nanosheets/nitrogen doped graphene/carbon nanotube film with ultrahigh capacitance and long cycle stability as a flexible binder-free electrode for supercapacitors. J. Mater. Chem. A 5, 689–698 (2017)

    Article  CAS  Google Scholar 

  7. J. Yan, W. Sun, T. Wei, Q. Zhang, Z.J. Fan, F. Wei, Fabrication and electrochemical performances of hierarchical porous Ni(OH)2 nanoflakes anchored on graphene sheets. J. Mater. Chem. 22, 11494–11502 (2012)

    Article  CAS  Google Scholar 

  8. L.M. Santino, Y. Lu, S. Acharya, L. Bloom, D. Cotton, A. Wayne, J.M. D’Arcy, Enhancing cycling stability of aqueous polyaniline electrochemical capacitors. ACS Appl. Mater. Inter. 8, 29452–29460 (2016)

    Article  CAS  Google Scholar 

  9. X. Tian, H.R. Ma, Z. Li, S.C. Yan, L. Ma, F. Yu, G. Wang, X.H. Guo, Y.Q. Ma, C.P. Wong, Flute type micropores activated carbon from cotton stalk for high performance supercapacitors. J. Power Sources 359, 88–96 (2017)

    Article  CAS  Google Scholar 

  10. J. Du, L. Liu, Z.P. Hu, Y.F. Yu, Y. Zhang, S.L. Hou, A.B. Chen, Raw cotton derived N-doped carbon fiber aerogel as efficient electrode for electrochemical capacitors. ACS Sustain. Chem. Eng. 6, 4008–4015 (2018)

    Article  CAS  Google Scholar 

  11. L. Zhang, Q.Q. Xu, X. Wang, Q. Sun, F. He, W.D. Pan, H.B. Xie, N, S co-doped hierarchical porous carbon from Chinese herbal residues for high-performance supercapacitors and oxygen reduction reaction. RSC Adv. 10, 41532–41541 (2020)

    Article  CAS  Google Scholar 

  12. T.N.J.I. Edison, R. Atchudan, N. Karthik, P. Chandrasekaran, S. Perumal, P. Arunachalam, P.B. Raja, M.G. Sethuraman, Y.R. Lee, Electrochemically exfoliated graphene sheets as electrode material for aqueous symmetric supercapacitors. Surf. Coat. Technol. 416, 127150 (2021)

    Article  CAS  Google Scholar 

  13. S.A. Haladkar, M.A. Desai, S.D. Sartale, Assessment of ecologically prepared carbon-nano-spheres for fabrication of flexible and durable supercell devices. J. Mater. Chem. A 6, 7246–7256 (2018)

    Article  CAS  Google Scholar 

  14. Z.Q. Tong, Y.N. Yang, J.Y. Wang, J.P. Zhao, B.L. Su, Y. Li, Layered polyaniline/graphene film from sandwich-structured polyaniline/graphene/polyaniline nanosheets for high-performance pseudosupercapacitors. J. Mater. Chem. A 2, 4624–4651 (2014)

    Article  Google Scholar 

  15. J. Ryu, C.B. Park, Synthesis of diphenylalanine/polyaniline core/shell conducting nanowires by peptide self-assembly. Angew. Chem. Int. Ed. Engl. 48, 4820–4823 (2009)

    Article  CAS  Google Scholar 

  16. G.X. Huang, W.W. Kang, B.L. Xing, L.J. Chen, C.X. Zhang, Oxygen-rich and hierarchical porous carbons prepared from coal based humic acid for supercapacitor electrodes. Fuel Process. Technol. 142, 1–5 (2016)

    Article  CAS  Google Scholar 

  17. J. Li, W.L. Liu, D. Xiao, X.H. Wang, Oxygen-rich hierarchical porous carbon made from pomelo peel fiber as electrode material for supercapacitor. Appl. Surf. Sci. 416, 918–924 (2017)

    Article  CAS  Google Scholar 

  18. C. Liang, J.P. Bao, C.G. Li, H. Huang, C.L. Chen, Y. Lou, H.Y. Lu, H.B. Lin, Z. Shi, S.H. Feng, One-dimensional hierarchically porous carbon from biomass with high capacitance as supercapacitor materials. Microporous Mesoporous Mater. 251, 77–82 (2017)

    Article  CAS  Google Scholar 

  19. Q. Zhang, K.H. Han, S.J. Li, M. Li, J.X. Li, K. Ren, Synthesis of garlic skin-derived 3D hierarchical porous carbon for high-performance supercapacitors. Nanoscale 10, 2427–2437 (2018)

    Article  CAS  Google Scholar 

  20. H.L. Jin, X. Feng, J. Li, M. Li, Y.Z. Xia, Y.F. Yuan, C. Yang, B. Dai, Z.Q. Lin, J.C. Wang, J. Lu, S. Wang, Heteroatom-doped porous carbon materials with unprecedented high volumetric capacitive performance. Angew. Chem. Int. Ed. Engl. 58, 2419–2423 (2019)

    Article  Google Scholar 

  21. D.W. Wang, F. Li, M. Liu, G.Q. Lu, H.M. Cheng, 3D aperiodic hierarchical porous graphitic carbon for high rate-suporting informaton. Angew. Chem. Int. Edit. 47, 373–376 (2008)

    Article  CAS  Google Scholar 

  22. H.J. Liu, J. Wang, C.X. Wang, Y.Y. Xia, Ordered hierarchical mesoporous/microporous carbon derived from mesoporous titanium-carbide/carbon composites and its electrochemical performance in supercapacitor. Adv. Energy Mater. 1, 1101–1108 (2011)

    Article  CAS  Google Scholar 

  23. G.L. Zhang, T.T. Guan, N. Wang, J.C. Wu, J.L. Wang, J.L. Qiao, K.X. Li, Small mesopore engineering of pitch-based porous carbons toward enhanced supercapacitor performance. Chem. Eng. J. 399, 125818 (2020)

    Article  CAS  Google Scholar 

  24. Z.J. Zhang, J.J. He, X.C. Tang, Y.L. Wang, B.B. Yang, K.J. Wang, Supercapacitors based on a nitrogen doped hierarchical porous carbon fabricated by self-activation of biomass: excellent rate capability and cycle stability. Carbon Lett. 29, 585–594 (2019)

    Article  Google Scholar 

  25. J. Yang, H.L. Wu, M. Zhu, W.J. Ren, Y. Lin, H.B. Chen, F. Pan, Optimized mesopores enabling enhanced rate performance in novel ultrahigh surface area meso-/microporous carbon for supercapacitors. Nano Energy 33, 453–461 (2017)

    Article  CAS  Google Scholar 

  26. Y.W. Hu, Y.C. Dong, F.F. Luo, Z. Wang, X. Li, G.F. Shi, Research progress on mechanism of activation method for biomass-based carbon material. New Chem. Mater. 48, 20–24 (2020)

    CAS  Google Scholar 

  27. L.S. Aravinda, K.K. Nagaraja, H.S. Nagaraja, K. Udaya Bhat, B. Ramachandra Bhat, Fabrication and performance evaluation of hybrid supercapacitor electrodes based on carbon nanotubes and sputtered TiO2. Nanotechnology 27, 314001 (2016)

    Article  CAS  Google Scholar 

  28. M. Yu, Y. Han, J. Li, CO2-activated porous carbon derived from cattailbiomass for removal of malachite green dye and application as supercapacitors. Chem. Eng. J. 317, 493–502 (2017)

    Article  CAS  Google Scholar 

  29. K.X. Zou, Y.F. Deng, J.P. Chen, Hierarchically porous nitrogen-doped carbon derived from the activation of agriculture waste by potassium hydroxide and urea for high-performance supercapacitors. J. Power Sources 378, 579–588 (2018)

    Article  CAS  Google Scholar 

  30. J.C. Wang, S. Kaskel, KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 22, 23710–23725 (2012)

    Article  CAS  Google Scholar 

  31. G. Yuan, Z. Jiang, A. Aramata, Y. Gao, Electrochemical behavior of activated-carbon capacitor material loaded with nickel oxide. Carbon 43, 2913–2917 (2005)

    Article  CAS  Google Scholar 

  32. R. Farzana, R. Rajarao, B.R. Bhat, Performance of an activated carbon supercapacitor electrode synthesised from waste Compact Discs (CDs). J. Ind. Eng. Chem. 65, 387–396 (2018)

    Article  CAS  Google Scholar 

  33. C.D. Ma, J. Gong, S. Zhao, X.G. Liu, X.Y. Mu, Y.H. Wang, X.C. Chen, T. Tang, One-pot green mass production of hierarchically porous carbon via a recyclable salt-templating strategy. Green Energy Environ. (2022). https://doi.org/10.1016/j.gee.2020.12.004

    Article  Google Scholar 

  34. K.L. Wang, Y.H. Cao, X.M. Wang, M.A. Castro, B. Luo, Z.R. Gu, J. Liu, J.D. Hoefelmeyer, Q.H. Fan, Rod-shape porous carbon derived from aniline modified lignin for symmetric supercapacitors. J. Power Sources 307, 462–467 (2016)

    Article  CAS  Google Scholar 

  35. K.C. Lee, M.S.W. Lim, Z.Y. Hong, S. Chong, T.J. Tiong, G.T. Pan, C.M. Huang, Coconut shell-derived activated carbon for high-performance solid-state supercapacitors. Energies 14, 4546 (2021)

    Article  CAS  Google Scholar 

  36. L.H. Yin, Y. Chen, D. Li, X.Q. Zhao, B. Hou, B.K. Cao, 3-Dimensional hierarchical porous activated carbon derived from coconut fibers with high-rate performance for symmetric supercapacitors. Mater. Des. 111, 44–50 (2016)

    Article  CAS  Google Scholar 

  37. K. Mensah-Darkwa, C. Zequine, P. Kahol, R. Gupta, Supercapacitor energy storage device using biowastes: a sustainable approach to green energy. Sustainability 11, 414 (2019)

    Article  CAS  Google Scholar 

  38. Q.T. Jiang, D.D. Liu, B. Liu, T. Zhou, J. Zhou, Blotting paper-derived activated porous carbon/reduced graphene oxide composite electrodes for supercapacitor applications. Molecules 24, 4625 (2019)

    Article  CAS  Google Scholar 

  39. Y. Liu, L. Yang, M.F. Liu, Z.Y. Tang, M.L. Liu, Enhanced sinterability of BaZr0. 1Ce0.7Y0.1Yb0. 1O3− δ by addition of nickel oxide. J. Power Sources 196, 9980–9984 (2011)

    Article  CAS  Google Scholar 

  40. K. Kuratani, K. Okuno, T. Iwaki, M. Kato, N. Takeichi, T. Miyuki, T. Awazu, M. Majima, T. Sakai, Converting rice husk activated carbon into active material for capacitor using three-dimensional porous current collector. J. Power Sources 196, 10788–10790 (2011)

    Article  CAS  Google Scholar 

  41. X.C. Jiang, F.Q. Guo, X.P. Jia, Y.B. Zhan, H.M. Zhou, L. Qian, Synthesis of nitrogen-doped hierarchical porous carbons from peanut shell as a promising electrode material for high-performance supercapacitors. J. Energy Storage 30, 101451 (2020)

    Article  Google Scholar 

  42. S.W. Woo, K. Dokko, H. Nakano, K. Kanamura, Preparation of three dimensionally ordered macroporous carbon with mesoporous walls for electric double-layer capacitors. J. Mater. Chem. 18, 1674–1680 (2008)

    Article  CAS  Google Scholar 

  43. W.J. Qian, F.X. Sun, Y.H. Xu, L.H. Qiu, C.H. Liu, S.D. Wang, F. Yan, Human hair-derived carbon flakes for electrochemical supercapacitors. Energy Environ. Sci. 7, 379–386 (2014)

    Article  CAS  Google Scholar 

  44. T.Y. Wei, X.L. Wei, L.W. Yang, H.P. Xiao, Y. Gao, H.M. Li, A one-step moderate-explosion assisted carbonization strategy to sulfur and nitrogen dual-doped porous carbon nanosheets derived from camellia petals for energy storage. J. Power Sources 331, 373–381 (2016)

    Article  CAS  Google Scholar 

  45. G.Y. Luo, Y.J. Gu, Y. Liu et al., Electrochemical performance of in situ LiFePO4 modified by N-doped graphene for Li-ion batteries. Ceram. Int. 47, 11332–11339 (2021)

    Article  CAS  Google Scholar 

  46. J.A. Macia-Agullo, B.C. Moore, D. Cazorla-Amoros, A. Linares-Solano, Influence of carbon fibres crystallinities on their chemical activation by KOH and NaOH. Microporous Mesoporous Mater. 101, 397–405 (2007)

    Article  CAS  Google Scholar 

  47. H. Yang, X. Sun, H. Zhu et al., Nano-porous carbon materials derived from different biomasses for high performance supercapacitors. Ceram. Int. 46, 5811–5820 (2020)

    Article  CAS  Google Scholar 

  48. H.L. Shen, X.F. Xia, O.Y. Yu, X.Y. Jiao, S. Mutahir, D. Mandler, Q.L. Hao, Preparation of biomass-based porous carbons with high specific capacitance for applications in supercapacitors. ChemElectroChem 6, 3599–3605 (2019)

    Article  CAS  Google Scholar 

  49. Y.W. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W.W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, D. Su, E.A. Stach, R.S. Ruoff, Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537–1541 (2011)

    Article  CAS  Google Scholar 

  50. V. Sahu, S. Grover, B. Tulachan, M. Sharma, G. Srivastava, M. Roy, M. Saxena, N. Sethy, K. Bhargava, D. Philip, H. Kim, G. Singh, S.K. Singh, M. Das, R.K. Sharma, Heavily nitrogen doped, graphene supercapacitor from silk cocoon. Electrochim. Acta 160, 244–253 (2015)

    Article  CAS  Google Scholar 

  51. X.J. Wei, J.S. Wei, Y.B. Li, H.L. Zou, X. Wei, J.S. Wei, Y. Li et al., Robust hierarchically interconnected porous carbons derived from discarded Rhus typhina fruits for ultrahigh capacitive performance supercapacitors. J. Power Sources 414, 13–23 (2019)

    Article  CAS  Google Scholar 

  52. A. Bello, F. Barzegar, D. Momodu, J. Dangbegnon, F. Taghizadeh, N. Manyala, Symmetric supercapacitors based on porous 3D interconnected carbon framework. Electrochim. Acta 151, 386–392 (2015)

    Article  CAS  Google Scholar 

  53. J.S. Zhou, J. Lian, L. Hou, J.C. Zhang, H.Y. Gou, M.R. Xia, Y.F. Zhao, T.A. Strobel, L. Tao, F.M. Gao, Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres. Nat. Commun. 6, 1–8 (2015)

    Article  Google Scholar 

  54. L.F. Chen, Z.H. Huang, H.W. Liang, W.T. Yao, Z.Y. Yu, S.H. Yu, Flexible all-solid-state high-power supercapacitor fabricated with nitrogen-doped carbon nanofiber electrode material derived from bacterial cellulose. Energy Environ. Sci. 6, 3331–3338 (2013)

    Article  CAS  Google Scholar 

  55. S. Shanmugam, T. Osaka, Efficient electrocatalytic oxygen reduction over metal free-nitrogen doped carbon nanocapsules. Chem. Commun. 47, 4463–4465 (2011)

    Article  CAS  Google Scholar 

  56. Y. Chen, M. Wang, M. Tian, Y.Z. Zhu, X.J. Wei, T. Jiang, S.Y. Gao, An innovative electro-fenton degradation system self-powered by triboelectric nanogenerator using biomass-derived carbon materials as cathode catalyst. Nano Energy 42, 314–321 (2017)

    Article  CAS  Google Scholar 

  57. M. Tian, Y.Z. Zhu, D.L. Zhang, M. Wang, Y. Chen, Y.J. Yang, S.Y. Gao, An innovative electro-fenton degradation system self-powered by triboelectric nanogenerator using biomass-derived carbon materials as cathode catalyst. Nano Energy 64, 314–321 (2019)

    Google Scholar 

  58. M. Sevilla, R. Mokaya, Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy Environ. Sci. 7, 1250–1280 (2014)

    Article  CAS  Google Scholar 

  59. Y. Zhai, Y. Dou, D. Zhao, P.F. Fulvio, R.T. Mayes, S. Dai, Carbon materials for chemical capacitive energy storage. Adv. Mater. 23, 4828–4850 (2011)

    Article  CAS  Google Scholar 

  60. W.X. Wang, H.Y. Quan, W.M. Gao, R. Zou, D.Z. Chen, Y.H. Dong, L. Guo, N-Doped hierarchical porous carbon from waste boat-fruited sterculia seed for high performance supercapacitors. RSC Adv. 7, 16678–16687 (2017)

    Article  CAS  Google Scholar 

  61. J. Romanos, M. Beckner, T. Rash, L. Firlej, B. Kuchta, P. Yu, G. Suppes, C. Wexler, P. Pfeifer, Nanospace engineering of KOH activated carbon. Nanotechnology 23, 015401 (2011)

    Article  Google Scholar 

  62. A.G. Pandolfo, A.F. Hollenkamp, Carbon properties and their role in supercapacitors. J. Power Sources 157, 11–27 (2006)

    Article  CAS  Google Scholar 

  63. W.L. Zhang, M.Z. Zhao, R.Y. Liu, X.F. Wang, H.B. Lin, W. Zhang, M. Zhao, R. Liu et al., Hierarchical porous carbon derived from lignin for high performance supercapacitor. Colloids Surf. A 484, 518–527 (2015)

    Article  CAS  Google Scholar 

  64. B.J. Yu, Z.Z. Chang, C.Y. Wang, The key pre-pyrolysis in lignin-based activated carbon preparation for high performance supercapacitors. Mater. Chem. Phys. 181, 187–193 (2016)

    Article  CAS  Google Scholar 

  65. L. Wei, K. Tian, Y.Y. Jin, X.Y. Zhang, X. Guo, Three-dimensional porous hollow microspheres of activated carbon for high-performance electrical double-layer capacitors. Microporous Mesoporous Mater. 227, 210–218 (2016)

    Article  CAS  Google Scholar 

  66. J. Yang, F. Xiang, H. Guo, Honeycomb-like porous carbon with N and S dual-doping as metal-free catalyst for the oxygen reduction reaction. Carbon 156, 514–522 (2020)

    Article  CAS  Google Scholar 

  67. B.L. Xing, G.X. Huang, L.J. Chen, H. Guo, C.X. Zhang, W. Xie, Z.F. Chen, Microwave synthesis of hierarchically porous activated carbon from lignite for high performance supercapacitors. J. Porous Mater. 23, 67–73 (2015)

    Article  Google Scholar 

  68. D. Hulicova-Jurcakova, M. Seredych, G.Q. Lu, T.J. Bandosz, Combined effect of nitrogen-and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv. Funct. Mater. 19, 438–447 (2009)

    Article  CAS  Google Scholar 

  69. F. Xu, R.J. Cai, Q.C. Zeng, C. Zou, D.C. Wu, F. Li, X. Lu, Y.R. Liang, R.W. Fu, Fast ion transport and high capacitance of polystyrene-based hierarchical porous carbon electrode material for supercapacitors. J. Mater. Chem. 21, 1970–1976 (2011)

    Article  CAS  Google Scholar 

  70. J.T. Jin, X.C. Qiao, F. Zhou, Z.S. Wu, L.F. Cui, H.B. Fan, Interconnected phosphorus and nitrogen co-doped porous exfoliated carbon nanosheets for high-rate supercapacitors. ACS Appl. Mater. (2017). https://doi.org/10.1021/acsami.7b00617

    Article  Google Scholar 

  71. X.L. Gao, W. Xing, J. Zhou, G.Q. Wang, S.P. Zhuo, Z. Liu, Q.Z. Xue, Z.F. Yan, Superior capacitive performance of active carbons derived from Enteromorpha prolifera. Electrochim. Acta 133, 459–466 (2014)

    Article  CAS  Google Scholar 

  72. Y. Liu, L.J. Cao, J. Luo, Y.Y. Peng, Q. Ji, J.Y. Dai, J. Zhu, X.Q. Liu, Biobased nitrogen-and oxygen-codoped carbon materials for high-performance supercapacitor. ACS Sustain. Chem. Eng. 7, 2763–2773 (2018)

    Article  Google Scholar 

  73. Y.L. Huo, Y.J. Gu, Z.L. Chen, X.Y. Ma, F.Z. Wu, X.Y. Dai, Enhanced electrochemical performance of Li1.2Ni0. 2Mn0. 6-xAlxO2 cathodes in an in situ Li2CO3 coating by a one-step method. Ionics (2022). https://doi.org/10.1007/s11581-022-04804-z

    Article  Google Scholar 

  74. D. Puthusseri, V. Aravindan, S. Madhavi, S. Ogale, 3D micro-porous conducting carbon beehive by single step polymer carbonization for high performance supercapacitors: the magic of in situ porogen formation. Energy Environ. Sci. 7, 728–735 (2014)

    Article  CAS  Google Scholar 

  75. Y. Liu, Y.J. Gu, G.Y. Luo, Z.L. Chen, F.Z. Wu, X.Y. Dai, Y. Mai, J.Q. Li, Ni-doped LiFePO4/C as high-performance cathode composites for Li-ion batteries. Ceram. Int. 46, 14857–14863 (2020)

    Article  CAS  Google Scholar 

  76. K.L. Sun, S.H. Yu, Z.L. Hu, Z.H. Li, G.T. Lei, Q.Z. Xiao, Y.H. Ding, Oxygen-containing hierarchically porous carbon materials derived from wild jujube pit for high-performance supercapacitor. Electrochim. Acta 231, 417–428 (2017)

    Article  CAS  Google Scholar 

  77. J.L. Chang, Z.Y. Gao, X.R. Wang, D.P. Wu, F. Xu, X. Wang, Y. Guo, K. Jiang, Activated porous carbon prepared from paulownia flower for high performance supercapacitor electrodes. Electrochim. Acta 157, 290–298 (2015)

    Article  CAS  Google Scholar 

  78. B.Y. Guan, Y. Lu, Y. Wang, M.H. Wu, X.W. Lou, Porous iron–cobalt alloy/nitrogen-doped carbon cages synthesized via pyrolysis of complex metal–organic framework hybrids for oxygen reduction. Adv. Funct. Mater. 28, 1706738 (2018)

    Article  Google Scholar 

  79. K. Sun, S. Yu, Z. Hu, KOH activated carbon derived from biomass-banana fibers as an efficient negative electrode in high performance asymmetric supercapacitor. J. Energy Chem. 26, 56–62 (2017)

    Article  Google Scholar 

  80. J. Wang, L. Shen, Y.L. Xu, H. Dou, X.G. Zhang, Lamellar-structured biomass-derived phosphorus-and nitrogen-co-doped porous carbon for high-performance supercapacitors. New J. Chem. 39, 9497–9503 (2015)

    Article  CAS  Google Scholar 

  81. P. Cheng, S.Y. Gao, P.Y. Zang, X.F. Yang, Y.L. Bai, H. Xu, Z.H. Liu, Z.B. Lei, Hierarchically porous carbon by activation of shiitake mushroom for capacitive energy storage. Carbon 93, 315–324 (2015)

    Article  CAS  Google Scholar 

  82. Z.J. Zhang, Q. Wang, Y.Q. Zhu, X.Y. Chen, Nanoporous graphitic carbon materials: Systematic incorporation of p-/m-/o-nitroaniline as effective redox additives for largely improving the capacitive performance. Carbon 100, 564–577 (2016)

    Article  CAS  Google Scholar 

  83. H. Peng, G.F. Ma, K.J. Sun, Z.G. Zhang, Q. Yang, Z.Q. Lei, Nitrogen-doped interconnected carbon nanosheets from pomelo mesocarps for high performance supercapacitors. Electrochim. Acta 190, 862–871 (2016)

    Article  CAS  Google Scholar 

  84. M. Sivachidambaram, J.J. Vijaya, L.J. Kennedy, R. Jothiramalingam, H. Al-Lohedan, M.A. Munusamy, E. Elanthamilan, J.P. Merlin, Preparation and characterization of activated carbon derived from the Borassus flabellifer flower as an electrode material for supercapacitor applications. New J. Chem. 41, 3939–3949 (2017)

    Article  CAS  Google Scholar 

  85. Z.Z. Chang, B.J. Yu, C.Y. Wang, Lignin-derived hierarchical porous carbon for high-performance supercapacitors. J. Solid State Electrochem. 20, 1405–1412 (2016)

    Article  CAS  Google Scholar 

  86. M. Karuppannan, Y. Kim, Y.E. Sung, O.J. Kwon, Nitrogen and sulfur co-doped graphene-like carbon sheets derived from coir pith bio-waste for symmetric supercapacitor applications. J. Appl. Electrochem. 49, 57–66 (2018)

    Article  Google Scholar 

  87. L. Chen, T. Ji, L.W. Mu, J.H. Zhu, Cotton fabric derived hierarchically porous carbon and nitrogen doping for sustainable capacitor electrode. Carbon 111, 839–848 (2017)

    Article  CAS  Google Scholar 

  88. Y.J. Li, G.L. Wang, T. Wei, Z.J. Fan, P. Yan, Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy 19, 165–175 (2016)

    Article  CAS  Google Scholar 

  89. Y.N. Lin, H. Chen, Y.L. Shi, G. Wang, L. Chen, F. Wang, S.Q. Li, F. Yu, L.L. Zhang, Nitrogen and sulfur Co-doped graphene-like carbon from industrial dye wastewater for use as a high-performance supercapacitor electrode. Glob. Chall. 3, 1900043 (2019)

    Article  Google Scholar 

  90. M. Chen, Z.F. Zhou, L. Zhao, M. Lin, Q.N. Guo, M.W. Li, Study of the scale effect on permeability in the interlayer shear weakness zone using sequential indicator simulation and sequential gaussian simulation. Water 10, 779 (2018)

    Article  Google Scholar 

  91. A. Jain, S.K. Tripathi, Effect of nano-filler on the performance of multiwalled carbon nanotubes based electrochemical double layer capacitors. J. Renew. Sustain. Energy 6, 013108 (2014)

    Article  Google Scholar 

  92. S.Y. Bai, G.Q. Tan, X.Q. Li, Q. Zhao, Y. Meng, Y.J. Wang, Y.Z. Zhang, D. Xiao, Pumpkin-derived porous carbon for supercapacitors with high performance. Chem-Asian J. 11, 1828–1836 (2016)

    Article  CAS  Google Scholar 

  93. J. Yang, Y.F. Liu, X.M. Chen, Z.H. Hu, G.H. Zhao, Carbon electrode material with high densities of energy and power. Acta Physico-Chimica Sin. 24, 13–19 (2008)

    Article  CAS  Google Scholar 

  94. Z. Ling, Z.Y. Wang, M.D. Zhang, C. Yu, G. Wang, Y.F. Dong, S.H. Liu, Y.W. Wang, J.S. Qiu, Sustainable synthesis and assembly of biomass-derived B/N co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors. Adv. Funct. Mater. 26, 111–119 (2016)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

YZ performed conceptualization, methodology, writing—original draft, formal analysis, validation and project administration. YW did validation and investigation. YL performed formal analysis. HW contributed to funding acquisition. HS done writing review & editing, supervision, project administration, funding acquisition.

Corresponding authors

Correspondence to Jincheng Mu or Hua Song.

Ethics declarations

Conflict of interest

The authors have no conflict of interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Mu, J., Wang, Y. et al. Preparation of hierarchical porous carbon through one-step KOH activation of coconut shell biomass for high-performance supercapacitor. J Mater Sci: Mater Electron 34, 527 (2023). https://doi.org/10.1007/s10854-023-09885-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-09885-8

Navigation