Skip to main content
Log in

Electric control of NiFe/NiO exchange bias through resistive switching under zero magnetic field

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Magnetoelectric coupling is of tremendous importance for the information storage with respect to the pursuit of high density, low power consumption, high speed, and nonvolatile devices. Electric control of the exchange bias is a typical method for realizing the magnetoelectric coupling effect. However, there remains a tremendous challenge to realize a full electric control of exchange bias under the condition of zero magnetic field at room temperature. Here, a resistance device with a large area of the Si/Ta/Pt/Ta/NiFe/NiO/Cu foil exchange bias multilayer was prepared based on the anti-ferromagnetism and resistive switching property of NiO film. The resistance of the system changed into a low resistance state, when applying a certain voltage to the NiFe/NiO multilayers in the vertical direction at room temperature. The exchange bias field of multilayers with a low resistance state decreased. And it was a nonvolatile change. This was primarily related to the effect of the electron capture by the defective oxygen vacancy on the flipping and motion of the magnetic moment at the exchange bias interface. This work provides a potential method for the research of full electric control of magnetization and exploring the exchange bias mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data that support the findings of this study are included within the article.

References

  1. I. Žutić, J. Fabian, S.D. Sarma, Rev. Mod. Phys. 76, 323 (2004)

    Article  Google Scholar 

  2. S. Parkin, J. Xin, C. Kaiser, A. Panchula, K. Roche, M. Samant, Proc. IEEE. 91, 661 (2003)

    Article  CAS  Google Scholar 

  3. N. Sharma, J.P. Bird, C. Binek, P.A. Dowben, D. Nikonov, A. Marshall, Semicond. Sci. Technol. 35, 073001 (2020)

    Article  CAS  Google Scholar 

  4. M. Vopsaroiu, J. Blackburn, M.G. Cain, J. Phys. D: Appl. Phys. 40, 5027 (2007)

    Article  CAS  Google Scholar 

  5. J. Nogués, I.K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999)

    Article  Google Scholar 

  6. Y. Wang, B. Dai, B. Huang, Y. Ren, J. Xu, Z. Wang, S.J. Tan, J. Ni, J. Mater. Sci.: Mater. Electron. 27, 3778 (2016)

    CAS  Google Scholar 

  7. T. Blachowicz, A. Ehrmann, Coatings 11, 122 (2021)

    Article  CAS  Google Scholar 

  8. S.M. Wu, S.A. Cybart, D. Yi, J.M. Parker, R. Ramesh, R.C. Dynes, Phys. Rev. Lett. 110, 067202 (2013)

    Article  CAS  Google Scholar 

  9. A. Chen, Y.G. Zhao, P. Li, X. Zhang, R.C. Peng, H.L. Huang, L.K. Zou, X.L. Zheng, S. Zhang, P.X. Miao, Y.L. Lu, J.W. Cai, C.W. Nan, Adv. Mater. 28, 363 (2016)

    Article  CAS  Google Scholar 

  10. X. Kang, Y.J. Gao, L.F. Liu, W. Chen, X. Zhao, Appl. Phys. Lett. 115, 103501 (2019)

    Article  Google Scholar 

  11. B. Cui, C. Song, G.A. Gehring, F. Li, G.Y. Wang, C. Chen, J.J. Peng, H.J. Mao, F. Zeng, F. Pan, Adv. Funct. Mater. 25, 864 (2015)

    Article  CAS  Google Scholar 

  12. N.P. Lu, P.F. Zhang, Q.H. Zhang, R.M. Qiao, Q. He, H.B. Li, Y.J. Wang, J.W. Guo, D. Zhang, Z. Duan, Z.L. Li, M. Wang, S.Z. Yang, M.Z. Yan, E. Arenholz, S.Y. Zhou, W.L. Yang, L. Gu, C.W. Nan, J. Wu, Y. Tokura, P. Yu, Nature 546, 124 (2017)

    Article  CAS  Google Scholar 

  13. L.Q. Liu, C.F. Pai, Y. Li, H.W. Tseng, D.C. Ralph, R.A. Buhrman, Science 336, 555 (2012)

    Article  CAS  Google Scholar 

  14. K. Garello, C.O. Avci, I.M. Miron, M. Baumgartner, A. Ghosh, S. Auffret, O. Boulle, G. Gaudin, P. Gambardella, Appl. Phys. Lett. 105, 212402 (2014)

    Article  Google Scholar 

  15. C.Y. Guo, C.H. Wan, M.K. Zhao, C. Fang, T.Y. Ma, X. Wang, Z.R. Yan, W.Q. He, Y.W. Xing, J. Feng, X.F. Han, Phys. Rev. B. 104, 094412 (2021)

    Article  CAS  Google Scholar 

  16. M.T. Johnson, C.B. Carter, H. Schmalzried, J. Am. Ceram. Soc. 83, 1768 (2000)

    Article  CAS  Google Scholar 

  17. W. Hu, N. Qin, G.H. Wu, Y.T. Lin, S.W. Li, D.H. Bao, J. Am. Ceram. Soc. 134, 14658 (2012)

    CAS  Google Scholar 

  18. A. Chen, Y. Wen, B. Fang, Y.L. Zhao, Q. Zhang, Y.S. Chang, P.S. Li, H. Wu, H.L. Huang, Y.L. Lu, Z.M. Zeng, J.W. Cai, X.F. Han, T. Wu, X.X. Zhang, Y.G. Zhao, Nat. Commun. 10, 1 (2019)

    Article  Google Scholar 

  19. S.S. Zhao, L. Wang, Z.Y. Zhou, C.L. Li, G.H. Dong, L. Zhang, B. Peng, T. Min, Z.Q. Hu, J. Ma, W. Ren, Z.G. Ye, W. Chen, P. Yu, C.W. Nan, M. Liu, Adv. Mater. 30, 1801639 (2018)

    Article  Google Scholar 

  20. P.H. Lin, B.Y. Yang, M.H. Tsai, P.C. Chen, K.F. Huang, H.H. Lin, C.H. Lai, Nat. Mater. 18, 335 (2019)

    Article  CAS  Google Scholar 

  21. L.J. Wei, Z.Z. Hu, G.X. Du, Y. Yuan, J. Wang, H.Q. Tu, B. You, S.M. Zhou, J.T. Qu, H.W. Liu, R.K. Zheng, Y. Hu, J. Du, Adv. Mater. 30, 1801885 (2018)

    Article  Google Scholar 

  22. J.Y. Son, C.H. Kim, J.H. Cho, Y.H. Shin, H.M. Jang, ACS Nano 4, 3288 (2010)

    Article  CAS  Google Scholar 

  23. D.H. Han, J.G. Zhu, J.H. Judy, J. Appl. Phys. 81, 4996 (1997)

    Article  CAS  Google Scholar 

  24. J.R. Fermin, Rev. Mex. Fis. 63, 145 (2017)

    CAS  Google Scholar 

  25. J.S. Zhao, M. Zhang, S.F. Wan, Z.C. Yang, C.S. Hwang, A.C.S. Appl, Mater. Interfaces. 10, 1828 (2018)

    Article  CAS  Google Scholar 

  26. R.D. McMichael, M.D. Stiles, P.J. Chen, W.F. Egelhoff Jr., Phys. Rev. B. 58, 8605 (1998)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Unveiling and Leading Project of the 9th Institute of China Electronics Technology Group Corporation (No. 2022SK-007) and the Project of State Key Laboratory of Environment-friendly Energy Materials (No. 20fksy23, No. 21fksy27).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Jing Ni, Yan Zhang, and Jun Li. The first draft of the manuscript was written by Jing Ni, Yan Zhang, and Bo Dai. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Bo Dai.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, J., Zhang, Y., Li, J. et al. Electric control of NiFe/NiO exchange bias through resistive switching under zero magnetic field. J Mater Sci: Mater Electron 34, 552 (2023). https://doi.org/10.1007/s10854-023-09881-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-09881-y

Navigation