Skip to main content
Log in

Achieving phase stability in ZnSe thin films by thickness and annealing recipes for optical window applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present work keenly demonstrates the phase stability of Zinc selenide (ZnSe) thin films in order to seek an appropriate substitute for traditionally employed hazardous Cadmium sulphide (CdS) window layer in the development of thin-film solar cells. The ZnSe thin films having thicknesses of 100 nm (T1) and 220 nm (T2) are deposited onto glass and Indium-doped Tin oxide (ITO)-coated glass substrates using resistive heating-based thermal evaporation technique followed by post-annealing in an air environment at 100 °C, 200 °C, and 300 °C temperature for 1 h. The structural properties explicitly demonstrate that ZnSe thin films of thickness 100 nm and 220 nm are amorphous and crystalline in nature, respectively. The annealing is found not sufficient to provoke considerable crystallization in 100 nm ZnSe thin films due to low thickness. The 220 nm ZnSe thin films show the transformation of the crystal phase from metastable hexagonal (for as deposited) to stable cubic phase (for annealed films). The optical properties delineate that the absorbance and transmittance of ZnSe films are fluctuated with thickness and annealing where T2 films exhibited wavy transmittance patterns. The current–voltage characteristics of T1 and T2 ZnSe thin films revealed to the Ohmic nature where resistivity is modified with films’ thickness and annealing. The 3D AFM images of as-deposited and 100 °C-annealed ZnSe films have hill and spike-like topographies, respectively. Field emission scanning electron microscopy (FESEM) images of films indicate uniform deposition without any voids and pin holes whereas energy-dispersive spectroscopy (EDS) patterns confirm the deposition of ZnSe films. The experimental results suggest that ZnSe thin films of the thickness of 220 nm annealed at 100 °C might be regarded as an appropriate window/buffer layer in solar cell devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All the data presented in this manuscript could be extracted be getting permission as per journal guidelines and copyrights.

References

  1. M.I.H. Ansari, A. Qurashi, M.K. Nazeeruddin, J. Photochem. Photobiol., C 35, 1–24 (2018)

    Article  CAS  Google Scholar 

  2. S. Chander, A. Purohit, A. Sharma, Arvind, S.P. Nehra, M.S. Dhaka, Energy Rep. 1, 104–109 (2015)

    Article  Google Scholar 

  3. D. Suthar, Himanshu, S.L. Patel, S. Chander, M.D. Kannan, M.S. Dhaka, J. Mater. Sci.: Mater. Electron. 32, 19070–19082 (2021)

    CAS  Google Scholar 

  4. S. Nair, S.B. Patel, J.V. Gohel, Mater. Today Energy 17, 100449 (2020)

    Article  Google Scholar 

  5. D.C. Sharma, S. Srivastava, Y.K. Vijay, and Y.K. Sharma, International Journal of Recent Research and Review II (2012) 16-20.

  6. S. Chuhadiya, R. Sharma, Himanshu, S.L. Patel, S. Chander, M.D. Kannan, M.S. Dhaka, Physica E 117, 113845 (2020)

    Article  CAS  Google Scholar 

  7. J.A. Yater, G.A. Landis, S.G. Bailey, L.C. Olsen, F.W. Addis, 25th PVSC, (Washington, D.C., 1996), pp. 13–17

  8. M. Imrana, A. Saleem, N.A. Khan, A.A. Khurram, N. Mehmood, Thin Solid Films 648, 31–38 (2018)

    Article  Google Scholar 

  9. S. Patra, S.K. Pradhan, Acta Mater. 60, 131–138 (2012)

    Article  CAS  Google Scholar 

  10. A. Saidane, D.L. Kirk, Thin Solid Films 144, 49–67 (1986)

    Article  CAS  Google Scholar 

  11. M. Kavitha, M. Saroja, V.R. Kumar, G. Jenifer, L.L. Stephygraph, International Journal of Latest Trends in Engineering and Technology, in International Conference on Nanotechnology: The Fruition of Science, (2017), pp. 174–178

  12. E. Guziewicz, M. Godlewski, K. Kopalko, E. Lusakowska, E. Dynowska, M. Guziewicz, M.M. Godlewski, M. Phillips, Thin Solid Films 446, 172–177 (2004)

    Article  CAS  Google Scholar 

  13. S. Soundeswaran, O.S. Kumar, R. Dhanasekaran, P. Ramasamy, R. Kumaresen, M. Ichimura, Mater. Chem. Phys. 82, 268–272 (2003)

    Article  CAS  Google Scholar 

  14. D. Suthar, G. Chasta, Himanshu, S.L. Patel, S. Chander, M.D. Kannan, M.S. Dhaka, Mater. Res. Bull. 132, 110982 (2020)

    Article  CAS  Google Scholar 

  15. S. Venkatachalam, D. Mangalaraj, S.K. Narayandass, K. Kim, J. Yi, Physica B 358, 27–35 (2005)

    Article  CAS  Google Scholar 

  16. N. Spalatu, D. Serban, T. Potlog, in CAS Proceedings (2011 International Semiconductor Conference, 2015), pp. 451–454

  17. Y. Ohtake, K. Kushiya, M. Ichikawa, A. Yamada, M. Konagai, Jpn. J. Appl. Phys. 34, 5949–5955 (1995)

    Article  CAS  Google Scholar 

  18. A. Ennaoui, S. Siebentritt, M.C. Lux-Steiner, W. Riedl, F. Karg, Sol. Energy Mater. Sol. Cells 67, 31–40 (2001)

    Article  CAS  Google Scholar 

  19. M. Munzel, C. Deibel, V. Dyakonov, J. Parisi, W. Riedl, F. Karg, Thin Solid Films 387, 231–234 (2001)

    Article  CAS  Google Scholar 

  20. K.C. Devendra, D.K. Shah, A. Shrivastava, Materials Today: Proceedings 49, 2580–2583 (2022)

  21. H.I. Elsaeedy, A.A. Hassan, H.A. Yakout, A. Qasem, Opt. Laser Technol. 141, 107139 (2021)

    Article  CAS  Google Scholar 

  22. R. Patel, C.N. Shivappa, G. Shivappa, H.M. Matt, Int. J. Eng. Res. Technol 2, 3568–3572 (2013)

    Google Scholar 

  23. V.M. Garcìa, M.T.S. Nair, P.K. Nair, Semicond. Sci. Technol. 14, 366–372 (1999)

    Article  Google Scholar 

  24. X.Q. Wei, B.Y. Man, M. Liu, C.S. Xue, H.Z. Zhuang, C. Yang, Physica B 388, 145–152 (2007)

    Article  CAS  Google Scholar 

  25. S.P. Nehra, S. Chander, A. Sharma, M.S. Dhaka, Mater. Sci. Semicond. Processing 40, 26–34 (2015)

    Article  CAS  Google Scholar 

  26. H. Hartmann, Kristall Technik 5(4), 527–534 (1970)

    Article  CAS  Google Scholar 

  27. R. Trlboulet, Semicond. Sci. Technol. 6, A18–A23 (1991)

    Article  Google Scholar 

  28. R. Indirajith, M. Rajalakshmi, K. Ramamurthi, M.B. Ahamed, R. Gopalakrishnan, Ferroelectrics 467, 13–21 (2014)

    Article  CAS  Google Scholar 

  29. C. Suryanarayan, M.G. Nortan, X-ray Diffraction (Plenum Press, New York, 1998)

    Book  Google Scholar 

  30. W.H. Bragg, W.L. Bragg, Proceedings of the Royal Society of London A88 605, 428–38 (1913)

  31. P. Scherrer, Bestimmung der Grösse und der innerenStruktur von KolloidteilchenmittelsRöntgenstrahlen. Nachr. Ges. Wiss. Göttingen 26, 98 (1918)

    Google Scholar 

  32. K. Ou, S. Wang, L. Bai, Y. Wang, K. Zhang, L. Yi, Thin Solid Films 669, 247–252 (2019)

    Article  CAS  Google Scholar 

  33. H.A. Bioki, M.B. Zarandi, Int. J. Opt. Photon. 5(2), 121–128 (2011)

    Google Scholar 

  34. A.A.S. Akl, M. Elhadi, J. Ovonic Res. 16, 323–335 (2020)

    Google Scholar 

  35. M.E. Fitzpatrick, A.T. Fry, P. Holdway, F.A. Kandil, J. Shackleton, L. Suominen, Measurement Good Practice Guide No. 52, National Physical Laboratory, (2005)

  36. S. Adachi, Handbook on Physical Properties of Semiconductors (Springer, Berlin, 2004)

    Google Scholar 

  37. C.W. Huang, H.M. Weng, Y.L. Jiang, H.Y. Ueng, Vacuum 83, 313–318 (2009)

    Article  Google Scholar 

  38. M.F. Hasaneen, Z.A. Alrowaili, W.S. Mohamed, Mater. Res. Exp. 7, 016422 (2020)

    Article  CAS  Google Scholar 

  39. F. Zakerian, H. Kafashan, Superlattices Microstruct. 124, 92–106 (2018)

    Article  CAS  Google Scholar 

  40. G. Chasta, Himanshu, S.L. Patel, S. Chander, M.D. Kannan, M.S. Dhaka, J. Mater. Sci.: Mater. Electron. 33, 139–157 (2022)

    CAS  Google Scholar 

  41. D. Shikha, V. Mehta, J. Sharma, R.P. Chauhan, J. Mater. Sci.: Mater. Electron. 28, 8359–8365 (2017)

    CAS  Google Scholar 

  42. Y.C. Sharma, P. Ansari, R. Sharma, D. Mathur, R.A. Dar, Chalcogenide Lett. 18(4), 183–189 (2021)

    Article  CAS  Google Scholar 

  43. J. Tauc (Ed.), Amorphous and Liquid Semiconductor, Springer Boston, 1974.

  44. M. Ashraf, S.M.J. Akhtar, A.F. Khan, Z. Ali, A. Qayyum, J. AlloysCompd. 509(5), 2414–2419 (2011)

    CAS  Google Scholar 

  45. D. Bao, X. Yao, N. Wakiya, K. Shinozaki, N. Mizutani, Appl. Phys. Lett. 79, 3767 (2001)

    Article  CAS  Google Scholar 

  46. O.V. Rambadey, A. Kumar, A. Sati, P.R. Sagdeo, ACS Omega 6, 32231–32238 (2021)

    Article  CAS  Google Scholar 

  47. G. Mahesha, Rashmitha, N. Meghana, M. Padiyar, Physica B 520, 37–42 (2017)

    Article  CAS  Google Scholar 

  48. A. Dahiya, S. Chuhadiya, D. Suthar, Himanshu, S.P. Nehra, M.S. Dhaka, Physica B 645, 414239 (2022)

    Article  CAS  Google Scholar 

  49. E. Bacaksiz, S. Aksu, I. Polat, S. Yılmaza, M. Altunbas, J. Alloys Compd. 487, 280–285 (2009)

    Article  CAS  Google Scholar 

  50. K.G. Rao, K.V. Bangera, G.K. Shiakumar, Mater. Sci. Semicond. Processing 16, 269–273 (2013)

    Article  Google Scholar 

  51. M. Prabhu, K. Kamalakkannan, N. Soundararajan, K. Ramachandran, J. Mater. Sci.: Mater. Electron. 26, 3963–3969 (2015)

    CAS  Google Scholar 

  52. C.K. De, N.K. Misra, Indian J. Phys. 71A(5), 535–544 (1997)

    CAS  Google Scholar 

  53. D.D. Hile, H.C. Swart, S.V. Motloung, R.E. Kroon, K.O. Egbo, L.F. Koao, J. Phys. Chem. Solids 140, 109381 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Ministry of Education, Govt. of India and Ministry of Higher Education, Govt. of Rajasthan for partial recurring expenses through RUSA 2.0 Research and Innovation Project, and to the DST-FIST through Department of Physics, Mohanlal Sukhadia University, Udaipur, India for XRD and AFM facilities. One of us, Sakshi Chuhadiya is thankful to the Council of Scientific and Industrial Research (CSIR), New Delhi for Senior Research Fellowship (SRF) vide number 09/172(0087)/2018-EMR I.

Funding

Ministry of Education, Govt. of India and Ministry of Higher Education, Govt. of Rajasthan for partial recurring expenses through RUSA 2.0 Research and Innovation Project.

Author information

Authors and Affiliations

Authors

Contributions

AD: Investigation, Formal analysis, Writing – original draft. SC: Formal analysis, Writing – original draft. H: Formal analysis, Writing – original draft. DS: Methodology, Writing – original draft. SPN: Investigation, Formal analysis, Writing – original draft. MSD: Conceptualization, Supervision, Writing – original draft.

Corresponding author

Correspondence to M. S. Dhaka.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dahiya, A., Chuhadiya, S., Himanshu et al. Achieving phase stability in ZnSe thin films by thickness and annealing recipes for optical window applications. J Mater Sci: Mater Electron 34, 410 (2023). https://doi.org/10.1007/s10854-023-09846-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-09846-1

Navigation