Skip to main content
Log in

A flexible humidity and temperature sensor based on calligraphy itself for calligraphy conservation application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Calligraphy preservation requires strict humidity and temperature environment, however, there are feeling differences between calligraphy and currently used sensors. Herein, a novel strategy is proposed to employ calligraphy itself (composed of paper and carbonic ink) as a sensor instead of sensitive components based on metals or semiconductors to eliminate sensing deviations. Carbonic ink can be decorated on paper substrate through dip coating or hand writing and the as-prepared composite calligraphy (CIP) is served as multifunctional sensor for humidity and temperature monitoring. The CIP demonstrates an admirable sensitivity to water molecules, showing a high humidity sensitivity of 506.36%/RH in the range of 94–100%RH and liquid water sensitivity of 17,680%. A linear negative temperature coefficient dependence of CIP as a temperature sensor is observed, and it exhibits outstanding performances including admirable temperature sensitivity of −3.13%/°C and prominent stability. As a result, CIP with accurate humidity and temperature sensing capability based on carbonic ink and paper as sensing element and flexible substrate shows brilliant possibility in calligraphy conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. S. Zhao, An Analysis of Interactive Technology’s Effect on the Appreciation of Traditional Chinese Painting: A Review of case Studies (The International Journal of New Media, Technology and the Arts, 2019)

  2. M. Kotsidi, G. Gorgolis, M. Pastore Carbone, G. Anagnostopoulos, G. Paterakis, G. Poggi, A. Manikas, G. Trakakis, P. Baglioni, C. Galiotis, Preventing colour fading in artworks with graphene veils. Nat. Nanotechnol. 16, 1004–1010 (2021)

    Article  CAS  Google Scholar 

  3. J. Xu, T. Zhang, Y. Jiang, D. Yang, F. Qiu, Q. Chen, Z. Yu, Preparation of self-healing acrylic copolymer composite coatings for application in protection of paper cultural relics. Polym. Eng. Sci. 60, 288–296 (2020)

    Article  CAS  Google Scholar 

  4. S.-F. Jiang, Z.-H. Qiao, N.-L. Li, J.-B. Luo, S. Shen, M.-H. Wu, Y. Zhang, Structural health monitoring system based on FBG sensing technique for chinese ancient timber buildings. Sensors 20, 110 (2019)

    Article  Google Scholar 

  5. J. Xu, T. Zhang, Y. Jiang, Q. Chen, D. Yang, F. Qiu, Z. Yu, Synthesis of microcrystalline cellulose/TiO2/fluorine/styrene-acrylate coatings and the application for simulated paper cultural relic protection. Cellulose 27, 6549–6562 (2020)

    Article  CAS  Google Scholar 

  6. I.V. Chernykh, O.A. Alduchov, R.E. Eskridge, Trends in low and high cloud boundaries and errors in height determination of cloud boundaries. Bull. Am. Meteorol. Soc. 82, 1941–1948 (2001)

    Article  Google Scholar 

  7. T.R. Gruber, J.M. Tenenbaum, J.C. Weber, Toward a knowledge medium for collaborative product development, Artificial Intelligence in Design’92, Springer1992, pp. 413–432

  8. S. Bi, L. Hou, W. Dong, Y. Lu, Multifunctional and ultrasensitive-reduced graphene oxide and pen ink/polyvinyl alcohol-decorated modal/spandex fabric for high-performance wearable sensors. ACS Appl. Mater. Interfaces 13, 2100–2109 (2020)

    Article  Google Scholar 

  9. D. Zhao, Y. Zhu, W. Cheng, W. Chen, Y. Wu, H. Yu, Cellulose-based flexible functional materials for emerging intelligent electronics. Adv. Mater 33, 2000619 (2021)

    Article  CAS  Google Scholar 

  10. M. Hongliang, H. Wenjia, J. Xin, L. Xia, D. Qijun, Research progress of paper-based flexible conductive composite materials. J. Compos. Mater. 38, 2446–2458 (2021)

    Google Scholar 

  11. L. Hu, J.W. Choi, Y. Yang, S. Jeong, F. La Mantia, L.-F. Cui, Y. Cui, Highly conductive paper for energy-storage devices, Proceedings of the National Academy of Sciences, 106 (2009) 21490–21494

  12. J. Yousaf, E. Almajali, M.E. Najjar, A. Amir, A. Altaf, M. Elahi, S.S. Alja’afreh, H. Rmili, Flexible, fully printable, and inexpensive paper-based chipless Arabic Alphabet-based RFID tags. Sensors 22, 564 (2022)

    Article  CAS  Google Scholar 

  13. X. Li, Y. Ren, X. Wang, S. Shao, H. Li, L. Wu, X. Liu, J. Zhao, A universal method for high-efficiency immobilization of semiconducting carbon nanotubes toward fully printed paper‐based electronics. Adv. Electron. Mater. 7, 2001025 (2021)

    Article  CAS  Google Scholar 

  14. C. Wang, R. Wu, H. Ling, Z. Zhao, W. Han, X. Shi, G.F. Payne, X. Wang, Flex. Electron. 6, 1–8 (2022)

    Article  Google Scholar 

  15. P. Zhu, Y. Kuang, Y. Wei, F. Li, H. Ou, F. Jiang, G. Chen, Electrostatic self-assembly enabled flexible paper-based humidity sensor with high sensitivity and superior durability. Chem. Eng. J. 404, 127105 (2021)

    Article  CAS  Google Scholar 

  16. X. Liu, X. Gao, L. Yang, Y. Zhao, F. Li, Metal–organic framework-functionalized paper-based electrochemical biosensor for ultrasensitive exosome assay. Anal. Chem. 93, 11792–11799 (2021)

    Article  CAS  Google Scholar 

  17. X. Guan, Z. Hou, K. Wu, H. Zhao, S. Liu, T. Fei, T. Zhang, Flexible humidity sensor based on modified cellulose paper. Sens. Actuators B 339, 129879 (2021)

    Article  CAS  Google Scholar 

  18. K. Shrivas, T. Kant, S. Patel, R. Devi, N.S. Dahariya, S. Pervez, M.K. Deb, M.K. Rai, J. Rai, Inkjet-printed paper-based colorimetric sensor coupled with smartphone for determination of mercury (Hg2+). J. Hazard. Mater 414, 125440 (2021)

    Article  Google Scholar 

  19. X. Zhang, Y. Wang, D. Fu, G. Wang, H. Wei, N. Ma, Photo-thermal converting polyaniline/ionic liquid inks for screen printing highly-sensitive flexible uncontacted thermal sensors. Eur. Polymer J 147, 110305 (2021)

    Article  CAS  Google Scholar 

  20. A. Dichiara, A. Song, S. Goodman, D. He, J. Bai, Smart papers comprising carbon nanotubes and cellulose microfibers for multifunctional sensing applications. J. Mater. Chem. A 5, 20161–20169 (2017)

    Article  CAS  Google Scholar 

  21. S. Abbasi-Moayed, H. Golmohammadi, M.R. Hormozi-Nezhad, A nanopaper-based artificial tongue: a ratiometric fluorescent sensor array on bacterial nanocellulose for chemical discrimination applications. Nanoscale 10, 2492–2502 (2018)

    Article  CAS  Google Scholar 

  22. R.P. Gandhiraman, D. Nordlund, V. Jayan, M. Meyyappan, J.E. Koehne, Scalable low-cost fabrication of disposable paper sensors for DNA detection. ACS Appl. Mater. Interfaces 6, 22751–22760 (2014)

    Article  CAS  Google Scholar 

  23. M. Saadi, A. Maguire, N. Pottackal, M.S.H. Thakur, M.M. Ikram, A.J. Hart, P.M. Ajayan, M.M. Rahman, Direct ink writing: a 3D printing technology for diverse materials. Adv. Mater. (2022). https://doi.org/10.1002/adma.202108855

    Article  Google Scholar 

  24. W. Liu, D. Lin, W. Zeng, Q. Wang, J. Yang, Z. Peng, Q. Zhang, G. Zhu, A multifunctional flexible ferroelectric transistor sensor for electronic skin. Adv. Mater. Interfaces 8, 2101166 (2021)

    Article  CAS  Google Scholar 

  25. A. Silvestri, A. Criado, F. Poletti, F. Wang, P. Fanjul-Bolado, M.B. González‐García, C. García‐Astrain, L.M. Liz‐Marzán, X. Feng, C. Zanardi, Bioresponsive, electroactive, and inkjet‐printable graphene‐based inks. Adv. Funct. Mater. 32, 2105028 (2022)

    Article  CAS  Google Scholar 

  26. Y. Ren, F. Meng, S. Zhang, B. Ping, H. Li, B. Yin, T. Ma, CNT@ MnO2composite ink Toward a Flexible 3D Printed micro-zinc‐ion Battery (Carbon Energy, 2022)

  27. J.R. Camargo, T.A. Silva, G.A. Rivas, B.C. Janegitz, Novel eco-friendly water-based conductive ink for the preparation of disposable screen-printed electrodes for sensing and biosensing applications. Electrochimica Acta. 409(2022)

  28. H. Zhao, T. Zhang, R. Qi, J. Dai, S. Liu, T. Fei, Drawn on paper: a reproducible humidity sensitive device by handwriting. ACS Appl. Mater. Interfaces 9, 28002–28009 (2017)

    Article  CAS  Google Scholar 

  29. T. Vuorinen, J. Niittynen, T. Kankkunen, T.M. Kraft, M. Mäntysalo, Inkjet-printed graphene/PEDOT: PSS temperature sensors on a skin-conformable polyurethane substrate. Sci. Rep. 6, 1–8 (2016)

    Article  Google Scholar 

  30. A. Manekkathodi, M.Y. Lu, C.W. Wang, L.J. Chen, Direct growth of aligned zinc oxide nanorods on paper substrates for low-cost flexible electronics. Adv. Mater 22, 4059–4063 (2010)

    Article  CAS  Google Scholar 

  31. K. Ghule, A.V. Ghule, B.-J. Chen, Y.-C. Ling, Preparation and characterization of ZnO nanoparticles coated paper and its antibacterial activity study. Green Chem. 8, 1034–1041 (2006)

    Article  CAS  Google Scholar 

  32. K. Oh, M. Lee, S.G. Lee, D.H. Jung, H.L. Lee, Cellulose nanofibrils coated paper substrate to detect trace molecules using surface-enhanced Raman scattering. Cellulose 25, 3339–3350 (2018)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Shanghai Sailing Program (22YF1400500), the Fundamental Research Funds for the Central Universities (2232022D-11).

Author information

Authors and Affiliations

Authors

Contributions

SB: contributed to the conception of the study and wrote the manuscript; YX: performed the experiment; QC: performed the analysis with constructive discussions.

Corresponding author

Correspondence to Qian Chen.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 423.7 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, S., Xue, Y. & Chen, Q. A flexible humidity and temperature sensor based on calligraphy itself for calligraphy conservation application. J Mater Sci: Mater Electron 34, 562 (2023). https://doi.org/10.1007/s10854-023-09832-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-09832-7

Navigation