Skip to main content
Log in

Cr-substituted nanocrystalline Ni–Co ferrites: tuning dielectric, magnetic, structural, X-band microwave absorption, and characteristic properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The structural, characteristic, dielectric, and magnetic features of Co0.5Ni0.5CrxFe2 − xO4 (\(0.0 \le x \le 1.0\) with a step of 0.2 x-concentration) nanoparticles are prepared via the hydrothermal method. The investigation of characteristics, structural, and magnetic features of the produced nanoparticles are examined through XRD, FT-IR, SEM–EDS, TEM-SAED, and VSM, respectively. AC conductivity and the dielectric investigations are also reported. According to the XRD measurements, all samples have the M-type hexagonal crystal structure nanocrystallites of between 27 and 97 nm. Refined structural parameters using Rietveld analysis are carried out using the TOPAS refinement program. A good match was observed between the diffraction patterns obtained and calculated by Rietveld analysis. Moreover, the morphological analyses indicate that the relatively small spherical structures of Ni–Co ferrites particles can be seen to change from spherical to relatively oval-shaped with increasing chromium content. The results of the FT-IR study show that the spinel structure has formed as predicted because the expected range of absorption bands is present. According to magnetic measurements, Cr-substituted Ni–Co ferrite nanostructures reveal a relatively soft ferromagnetic property. The coercive field (Hc) variation has a propensity to decrease in relation to the Cr-concentration. The electromagnetic constitutive parameters are calculated from measured S-parameters (S11 and S21) using network analyzer and the return losses of the samples are then obtained to determine microwave absorption properties. According to the dielectric and magnetic tangent losses or dissipation factors, both dielectric and magnetic features can mutually reinforce in terms of microwave absorption properties in the X-band. The Cr2O3 impurity peaks obtained by XRD analysis have an effect on the microwave absorption properties. The results of the microwave absorption based on each concentration reveal that there exist electromagnetic wave absorptions between approximately 11 GHz and 12.4 GHz in the X-band. The absorption trend is also towards the Ku-band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. R. Jasrotia, G. Kumar, K.M. Batoo, S.F. Adil, M. Khan, R. Sharma, A. Kumar, V.P. Singh, Phys. B Condens. Matter 569, 1 (2019)

    Article  CAS  Google Scholar 

  2. A. Teber, R. Bansal, I.S. Unver, Z. Mehmedi, Int. J. High Speed Electron. Syst. 27, 1840011 (2018)

    Article  CAS  Google Scholar 

  3. B.I. Kharisov, H.V.R. Dias, O.V. Kharissova, Arab. J. Chem. 12, 1234 (2019)

    Article  CAS  Google Scholar 

  4. H. Liang, H. Xing, M. Qin, H. Wu, Compos. Part A Appl. Sci. Manuf. 135, 105959 (2020)

    Article  CAS  Google Scholar 

  5. R. Jasrotia, S. Kour, P. Puri, A.D. Jara, B. Singh, C. Bhardwaj, V.P. Singh, R. Kumar, Solid State Sci. 110, 106445 (2020)

    Article  CAS  Google Scholar 

  6. H. Liang, L. Zhang, H. Wu, Small 18, 1 (2022)

    Google Scholar 

  7. P. Lathiya, J. W.-J. of the A. C. Society, and undefined 2022, Wiley Online Libr. 105, 2678 (2021).

  8. V. Tukaram, S.S. Shinde, R.B. Borade, A.B. Kadam, Phys. B Condens. Matter. 577, 411783 (2020)

    Article  CAS  Google Scholar 

  9. R. Willson, S. Sabale, V. Jadhav, V. Khot, Xiaoli, Z. Meiling Xin, and H. Chen, (n.d.).

  10. K. Raju, G. Venkataiah, D.H. Yoon, Ceram. Int. 40, 9337 (2014)

    Article  CAS  Google Scholar 

  11. H. Bi, X. Jiang, S. Li, J. Yang, Jinshu Xuebao/Acta Metall. Sin. 33, 1074 (1997)

    Google Scholar 

  12. J. Li, Y. Li, X. Tian, L. Zou, X. Zhao, S. Wang, S. Wang, Mater. Sci. Appl. 08, 1014 (2017)

    CAS  Google Scholar 

  13. C.A. Huang, C.K. Lin, Y.H. Yeh, Surf. Coatings Technol. 205, 139 (2010)

    Article  CAS  Google Scholar 

  14. P.A. Shaikh, R.C. Kambale, A.V. Rao, Y.D. Kolekar, J. Alloys Compd. 492, 590 (2010)

    Article  CAS  Google Scholar 

  15. K. Maaz, W. Khalid, A. Mumtaz, S.K. Hasanain, J. Liu, J.L. Duan, Phys. E Low-Dimensional Syst. Nanostruct. 41, 593 (2009)

    Article  CAS  Google Scholar 

  16. M.B. Mohamed, K. El-Sayed, Compos. Part B Eng. 56, 270 (2014)

    Article  CAS  Google Scholar 

  17. H. W. and H. F. M Bakr Mohamed, J. Phys. D. Appl. Phys. 43, 455409 (2010).

  18. S. Singhal, R. Sharma, T. Namgyal, S. Jauhar, S. Bhukal, J. Kaur, Ceram. Int. 38, 2773 (2012)

    Article  CAS  Google Scholar 

  19. M.B. Mohamed, K. El-Sayed, Mater. Res. Bull. 48, 1778 (2013)

    Article  CAS  Google Scholar 

  20. B.G. Toksha, S.E. Shirsath, M.L. Mane, S.M. Patange, S.S. Jadhav, J. Phys. Chem. C 115, 20905 (2011)

    Article  CAS  Google Scholar 

  21. M.J. Iqbal, M.R. Siddiquah, J. Alloys Compd. 453, 513 (2008)

    Article  CAS  Google Scholar 

  22. S.S. More, R.H. Kadam, A.B. Kadam, A.R. Shite, D.R. Mane, K.M. Jadhav, J. Alloys Compd. 502, 477 (2010)

    Article  CAS  Google Scholar 

  23. P.N. Vasambekar, C.B. Kolekar, A.S. Vaingankar, Mater. Chem. Phys. 60, 282 (1999)

    Article  CAS  Google Scholar 

  24. S.C. Goh, C.H. Chia, S. Zakaria, M. Yusoff, C.Y. Haw, S. Ahmadi, N.M. Huang, H.N. Lim, Mater. Chem. Phys. 120, 31 (2010)

    Article  CAS  Google Scholar 

  25. R.S. Melo, F.C. Silva, K.R.M. Moura, A.S. De Menezes, F.S.M. Sinfrônio, J. Magn. Magn. Mater. 381, 109 (2015)

    Article  CAS  Google Scholar 

  26. R. Kumar Kotnala, J. Shah, Int. J. Energy Res. 40, 1652 (2016)

    Article  Google Scholar 

  27. R. Topkaya, O. Akman, S. Kazan, B. Aktaş, Z. Durmus, A. Baykal, J. Nanoparticle Res. 14, 1 (2012)

    Article  Google Scholar 

  28. M.F. Sarac, J. Supercond. Nov. Magn. 33, 397 (2020)

    Article  CAS  Google Scholar 

  29. B. Alim, I. Han, L. Demir, Appl. Radiat. Isot. 112, 5 (2016)

    Article  CAS  Google Scholar 

  30. M. Uğurlu, B. Alım, İ Han, L. Demir, J. Alloys Compd. 695, 2619 (2017)

    Article  Google Scholar 

  31. M.N. Ashiq, F. Naz, M.A. Malana, R.S. Gohar, Z. Ahmad, Mater. Res. Bull. 47, 683 (2012)

    Article  CAS  Google Scholar 

  32. L. Gama, E.P. Hernandez, D.R. Cornejo, A.A. Costa, S.M. Rezende, R.H.G.A. Kiminami, A.C.F.M. Costa, J. Magn. Magn. Mater. 317, 29 (2007)

    Article  CAS  Google Scholar 

  33. K. Vijaya Kumar, R. Sridhar, D. Ravinder, Process. Appl. Ceram. 12, 1 (2018)

    Article  Google Scholar 

  34. P.N. Vasambekar, C.B. Kolekar, A.S. Vaingankar, J. Magn. Magn. Mater. 186, 333 (1998)

    Article  CAS  Google Scholar 

  35. U. Kurtan, R. Topkaya, A. Baykal, M.S. Toprak, Ceram. Int. 39, 6551 (2013)

    Article  CAS  Google Scholar 

  36. T. Hou, B. Wang, M. Ma, A. Feng, Z. Huang, Y. Zhang, Z. Jia, G. Tan, H. Cao, G. Wu, Compos. Part B Eng. 180, 107577 (2020)

    Article  CAS  Google Scholar 

  37. A. Teber, K. Cil, T. Yilmaz, B. Eraslan, D. Uysal, G. Surucu, A.H. Baykal, R. Bansal, Aerospace 4, 2 (2017)

    Article  Google Scholar 

  38. J. Chen, J. Wu, H. Ge, D. Zhao, C. Liu, X. Hong, Compos. Part A Appl. Sci. Manuf. 82, 141 (2016)

    Article  CAS  Google Scholar 

  39. C. Stergiou, J. Magn. Magn. Mater. 426, 629 (2017)

    Article  CAS  Google Scholar 

  40. A. Teber, I. Unver, H. Kavas, B. Aktas, R. Bansal, J. Magn. Magn. Mater. 406, 228 (2016)

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by AT and MFS. The first draft of the manuscript was written by all authors. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mehmet F. Sarac.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teber, A., Sarac, M.F. Cr-substituted nanocrystalline Ni–Co ferrites: tuning dielectric, magnetic, structural, X-band microwave absorption, and characteristic properties. J Mater Sci: Mater Electron 34, 290 (2023). https://doi.org/10.1007/s10854-022-09793-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09793-3

Navigation