Skip to main content
Log in

Fishing-net-like conductive network built by multi-walled carbon nanotubes and yolk–shell MnO2 with enhanced electromagnetic wave polarized absorption

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Enhancing polarization as an effective strategy has attracted wide attention to improve electromagnetic wave absorption performance. In this work, a simple self-template multiple oxidation–etching method is used to prepare the fishing-net-like yolk–shell MnO2@MWCNTs (MYS@MWCNTs) absorber. The structural effects of MYS@MWCNTs and multi-walled carbon nanotube (MWCNTs) dispersion on the microwave absorption properties are investigated in detail. Related SEM and TEM images showed that the MWCNTs disappeared uniformly in MYS@MWCNTs after adjusting the PVP dispersant, thereby weakening the adverse influence of skin effect on impedance matching. One-dimensional MWCNTs penetrated through MnO2 yolk–shell (MYS) microsphere and formed unique fishing-net-like conductive network PVP-optimized MYS@MWCNTs with enhanced impedance matching. MYS@MWCNTs-2 obtains excellent microwave absorption performance with a minimum reflection loss (RLmin) of -52.8 dB at 3.76 GHz because of interface polarization, dipole polarization, and enhanced conductive loss. Therefore, the as-prepared MYS@MWCNTs has potential applications in the field of electromagnetic wave absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. B.Y. Kuang, W.L. Song, M.Q. Ning, J.B. Li, Z.J. Zhao, D.Y. Guo, M.S. Cao, H.B. Jin, Chemical reduction dependent dielectric properties and dielectric loss mechanism of reduced graphene oxide. Carbon 127, 209–217 (2018). https://doi.org/10.1016/j.carbon.2017.10.092

    Article  CAS  Google Scholar 

  2. C.H. Zhou, C. Wu, H.P. Lv, M. Yan, Porous Co9S8 nanotubes with the percolation effect for lightweight and highly efficient electromagnetic wave absorption. J. Mater. Chem. C 7, 1696 (2019). https://doi.org/10.1039/c8tc05871g

    Article  CAS  Google Scholar 

  3. L.L. Song, Y.P. Duan, J. Liu, H.F. Pang, Transformation between nanosheets and nanowires structure in MnO2 upon providing Co2+ ions and applications for microwave absorption. Nano Res. 3, 195–104 (2020). https://doi.org/10.1007/s12274-019-2578-2

    Article  CAS  Google Scholar 

  4. Q.H. Liu, Q. Cao, H. Bi, C.Y. Liang, K.P. Yuan, W. She, Y.J. Yang, R.C. Che, CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28, 486–490 (2016). https://doi.org/10.1002/adma.201503149

    Article  CAS  Google Scholar 

  5. Y.Q. Zhan, Z.H. Long, X.Y. Wan, J.M. Zhang, S.J. He, Y. He, 3D carbon fiber mats/nano-Fe3O4 hybrid material with high electromagnetic shielding performance. Appl. Surf. Sci. 444, 710–720 (2018). https://doi.org/10.1016/j.apsusc.2018.03.006

    Article  CAS  Google Scholar 

  6. L. Wang, X. Li, Q.Q. Li, Y.H. Zhao, R.C. Che, Enhanced polarization from hollow cube-like ZnSnO3 wrapped by multiwalled carbon nanotubes: as a lightweight and high-performance microwave absorber. ACS Appl. Mater. Interfaces 10, 22602–22610 (2018). https://doi.org/10.1021/acsami.8b05414

    Article  CAS  Google Scholar 

  7. Y.F. Guo, J.Y. Li, F.B. Meng, W. Wei, Q. Yang, Y. Li, H.G. Wang, F.X. Peng, Z.W. Zhou, Hybridization-induced polarization of graphene sheets by intercalation polymerized polyaniline towards high performance of microwave absorption. ACS Appl. Mater. Interfaces 11, 17100–17107 (2019). https://doi.org/10.1021/acsami.9b04498

    Article  CAS  Google Scholar 

  8. F.Y. Wang, N. Wang, X.J. Han, D.W. Liu, Y.H. Wang, L.R. Cui, P. Xu, Y.C. Du, Core-shell FeCo@carbon nanoparticles encapsulated in polydopamine derived carbon nanocages for efficient microwave absorption. Carbon 145, 701–711 (2019). https://doi.org/10.1016/j.carbon.2019.01.082

    Article  CAS  Google Scholar 

  9. H.L. Lv, X.H. Liang, G.B. Ji, H.Q. Zhang, Y.W. Du, Porous three-dimensional flower-like Co/CoO and its excellent electromagnetic absorption properties. ACS Appl. Mater. Interfaces 7, 9776–9783 (2015). https://doi.org/10.1021/acsami.5b01654

    Article  CAS  Google Scholar 

  10. M.T. Qiao, X.F. Lei, Y. Ma, L.D. Tian, K.H. Su, Q.Y. Zhang, Dependency of tunable microwave absorption performance on morphology-controlled hierarchical shells for core-shell Fe3O4@MnO2 composite microspheres. Chem. Eng. J. 304, 552–562 (2016). https://doi.org/10.1016/j.cej.2016.06.094

    Article  CAS  Google Scholar 

  11. H.X. Jia, H.L. Xing, X.L. Ji, S.T. Gao, Self-template and in-situ polymerization strategy to lightweight hollow MnO2@polyaniline core-shell heterojunction with excellent microwave absorption properties. Appl. Surf. Sci. 537, 147857 (2021). https://doi.org/10.1016/j.apsusc.2020.147857

    Article  CAS  Google Scholar 

  12. W.B. You, H. Bi, W. She, Y. Zhang, R.C. Che, Dipolar-distribution cavity γ-Fe2O3@C@α-MnO2 nanospindle with broadened microwave absorption bandwidth by chemically etching. Small 13, 1602779 (2017). https://doi.org/10.1002/smll.201602779

    Article  CAS  Google Scholar 

  13. M. Zhou, X. Zhang, J.M. Wei, S.L. Zhao, L. Wang, B.X. Feng, Morphology-controlled synthesis and novel microwave absorption properties of hollow urchinlike α-MnO2 nanostructures. J. Phys. Chem. C 11, 1398–1402 (2011). https://doi.org/10.1021/jp106652x

    Article  CAS  Google Scholar 

  14. C.Y. Li, Y.J. Zhou, P.W. Huo, X.K. Wang, Fabricated high performance ultrathin MoSe2 nanosheets grow on MWCNTs hybrid materials for asymmetric supercapacitors. J. Alloy Compd. 826, 1541 (2020). https://doi.org/10.1016/j.jallcom.2020.154175

    Article  CAS  Google Scholar 

  15. S.W. Hu, S.J. Li, K.B. Xu, W. Jiang, J.L. Zhang, J.S. Liu, MWCNTS/BiOCOOH composites with improved sunlight photocatalytic activity. Mater. Lett. 191, 157–160 (2017). https://doi.org/10.1016/j.matlet.2016.12.077

    Article  CAS  Google Scholar 

  16. H.H. Chen, Z.Y. Huang, Y. Huang, Y. Zhang, Z. Ge, B. Qin, Z.F. Liu, Q. Shi, P.S. Xiao, Y. Yang, T.F. Zhang, Y.S. Chen, Synergistically assembled MWCNTs/graphene foam with highly efficient microwave absorption in both C and X bands. Carbon 124, 506–514 (2017). https://doi.org/10.1016/j.carbon.2017.09.007

    Article  CAS  Google Scholar 

  17. L. Wang, X.F. Yu, X. Li, J. Zhang, M. Wang, R.C. Che, Conductive-network enhanced microwave absorption performance from carbon coated defect-rich Fe2O3 anchored on multi-wall carbon nanotube. Carbon 155, 298–308 (2019). https://doi.org/10.1016/j.carbon.2019.07.049

    Article  CAS  Google Scholar 

  18. J. Li, D. Zhou, P. Wang, C. Du, W. Liu, J. Su, L. Pang, M. Cao, L. Kong, Recent progress in two-dimensional materials for microwave absorption applications. Chem. Eng. J. 425, 131558 (2021). https://doi.org/10.1016/j.cej.2021.131558

    Article  CAS  Google Scholar 

  19. Y. Duan, H. Pang, H. Zhang, Structure and composition design on ternary CNT@ZnFe2O4@ZnO composite utilized as enhanced microwave absorbing materials. Diam. Relat. Mater. 120, 108701 (2021). https://doi.org/10.1016/j.diamond.2021.108701

    Article  CAS  Google Scholar 

  20. X.H. Tang, J. Li, Y.J. Tan, J.H. Cai, J.H. Liu, M. Wang, Achieve high performance microwave shielding in poly(ε-caprolactone)/multi-wall carbon nanotube composites via balancing absorption in conductive domains and multiple scattering at interfaces. Appl. Surf. Sci. 508, 145178 (2020). https://doi.org/10.1016/j.apsusc.2019.145178

    Article  CAS  Google Scholar 

  21. Z.F. Liu, H.L. Xing, Y. Liu, H. Wang, H.X. Jia, X.L. Ji, Hydrothermally synthesized Zn ferrite/multi-walled carbon nanotubes composite with enhanced electromagnetic-wave absorption performance. J. Alloy Compd. 731, 745–752 (2018). https://doi.org/10.1016/j.jallcom.2017.09.317

    Article  CAS  Google Scholar 

  22. L. Kong, X. Yin, H. Xu, X. Yuan, T. Wang, Z. Xu, J. Huang, R. Yang, H. Fan, Powerful absorbing and lightweight electromagnetic shielding CNTs/RGO composite. Carbon. 145, 61–66 (2019). https://doi.org/10.1016/j.carbon.2019.01.009

    Article  CAS  Google Scholar 

  23. D. Xu, Y. Yang, L. Lyu, A. Ouyang, W. Liu, Z. Wang, L. Wu, F. Yang, J. Liu, F. Wang, One-dimensional MnO@N-doped carbon nanotubes as robust dielectric loss electromagnetic wave absorbers. Chem. Eng. J. 410, 128295 (2021). https://doi.org/10.1016/j.cej.2020.128295

    Article  CAS  Google Scholar 

  24. Q. Zhou, X. Dai, K. Li, C. Zhang, X. Zhang, Z. Du, S. Yi, P. Yang, J. Rao, Y. Zhang, Facile synthesis of a 2D multilayer core–shell MnO2@LDH@MMT composite with a nanoflower shape for electromagnetic wave absorption. Crystengcomm 24, 6546–6557 (2022). https://doi.org/10.1039/d2ce00928e

    Article  CAS  Google Scholar 

  25. X. Zhou, H. Han, Y. Wang, C. Zhang, H. Lv, Z. Lou, Silicon-coated fibrous network of carbon nanotube/iron towards stable and wideband electromagnetic wave absorption. J. Mater. Sci. Technol. 121, 199–206 (2022). https://doi.org/10.1016/j.jmst.2022.03.002

    Article  Google Scholar 

  26. J. Feng, Y. Wang, Y. Hou, L. Li, Tunable design of yolk-shell ZnFe2O4@RGO@TiO2 microspheres for enhanced high-frequency microwave absorption. Inorg. Chem. Front. 4, 935–945 (2017). https://doi.org/10.1039/C7QI00120G

    Article  CAS  Google Scholar 

  27. Y. Zhou, W. Zhou, C. Ni, S. Yan, L. Yu, X. Li, “Tree blossom” Ni/NC/C composites as high-efficiency microwave absorbents. Chem. Eng. J. 430, 132621 (2022). https://doi.org/10.1016/j.cej.2021.132621

    Article  CAS  Google Scholar 

  28. Y.C. Yin, X.F. Liu, X.J. Wei, Y. Li, X.Y. Nie, R.H. Yu, J.L. Shui, Magnetically aligned Co–C/MWCNTs composite derived from MWCNTs-interconnected zeolitic imidazolate frameworks for a lightweight and highly efficient electromagnetic wave absorber. ACS Appl. Mater. Interfaces 9, 30850–30861 (2017). https://doi.org/10.1021/acsami.7b10067

    Article  CAS  Google Scholar 

  29. D.Q. Zhang, Y.X. Jia, J.Y. Cheng, S.M. Chen, J.X. Chai, X.Y. Yang, Z.Y. Wu, H. Wang, W.J. Zhang, Z.L. Zhao, C. Han, M.S. Cao, G.P. Zheng, High-performance microwave absorption materials based on MoS2-graphene isomorphic hetero-structures. J. Alloy Compd. 758, 62–71 (2018). https://doi.org/10.1016/j.jallcom.2018.05.130

    Article  CAS  Google Scholar 

  30. H.J. Wei, X.W. Yin, X. Li, M.H. Li, X.L. Dang, L.T. Zhang, L.F. Cheng, Controllable synthesis of defective carbon nanotubes/Sc2Si2O7 ceramic with adjustable dielectric properties for broadband high-performance microwave absorption. Carbon 147, 276–283 (2019). https://doi.org/10.1016/j.carbon.2019.03.008

    Article  CAS  Google Scholar 

  31. L.X. Huang, Y.P. Duan, X.H. Dai, Y.S. Zeng, G.J. Ma, Y. Liu, S.H. Gao, W.P. Zhang, Bio-inspired metamaterials: multi-bands electromagnetic wave adaptability and hydrophobic characteristics. Small 15, 1902730 (2019). https://doi.org/10.1002/smll.201902730

    Article  CAS  Google Scholar 

  32. K. Wang, Y. Chen, R. Tian, H. Li, Y. Zhou, H. Duan, H. Liu, Porous Co-C core-shell nanocomposites derived from Co-MOF-74 with enhanced electromagnetic wave absorption performance. ACS Appl. Mater. Interfaces 10, 11333–11342 (2018). https://doi.org/10.1021/acsami.8b00965

    Article  CAS  Google Scholar 

  33. H. Wang, F. Meng, J. Li, T. Li, Z. Chen, H. Luo, Z. Zhou, Carbonized design of hierarchical porous carbon/Fe3O4@Fe derived from loofah sponge to achieve tunable high-performance microwave absorption. ACS Sustain. Chem. Eng. 6, 11801–11810 (2018). https://doi.org/10.1021/acssuschemeng.8b02089

    Article  CAS  Google Scholar 

  34. L. Wang, H.L. Xing, S.T. Gao, X.L. Ji, Z.Y. Shen, Porous flower-like NiO@graphene composites with superior microwave absorption properties. J. Mater. Chem. C 5, 2005–2014 (2017). https://doi.org/10.1039/C6TC05179K

    Article  CAS  Google Scholar 

  35. G.H. He, Y.P. Duan, H.F. Pang, Microwave absorbents of crystalline Fe/MnO@C nanocapsules embedded in amorphous carbon. Nano-Micro Lett. 12, 57 (2020). https://doi.org/10.1007/s40820-020-0388-4

    Article  CAS  Google Scholar 

  36. J.J. Pan, X. Sun, T. Wang, Z.T. Zhu, Y.P. He, W. Xia, J.P. He, Porous coin-like Fe@MoS2 composite with optimized impedance matching for efficient microwave absorption. Appl. Surf. Sci. 457, 271–279 (2018). https://doi.org/10.1016/j.apsusc.2018.06.263

    Article  CAS  Google Scholar 

  37. S.T. Gao, Y.C. Zhang, H.L. Xing, H.X. Li, Controlled reduction synthesis of yolk-shell magnetic@void@C for electromagnetic wave absorption. Chem. Eng. J. 387, 124149 (2020). https://doi.org/10.1016/j.cej.2020.124149

    Article  CAS  Google Scholar 

  38. L. Wang, M.Q. Huang, X.F. Yu, W.B. You, J. Zhang, X.H. Liu, M. Wang, R.C. Che, MOF-derived Ni1-xCox@carbon with tunable nano-microstructure as lightweight and highly efficient electromagnetic wave absorber. Nano-Micro Lett. 12, 150 (2020). https://doi.org/10.1007/s40820-020-00488-0

    Article  CAS  Google Scholar 

  39. F. Meng, H. Wang, W. Wei, Z. Chen, T. Li, C. Li, Y. Xuan, Z. Zhou, Generation of graphene-based aerogel microspheres for broadband and tunable high-performance microwave absorption by electrospinning-freeze drying process. Nano Res. 11, 2847–2861 (2018). https://doi.org/10.1007/s12274-017-1915-6

    Article  CAS  Google Scholar 

  40. M.Q. Huang, L. Wang, K. Pei, W.B. You, X.F. Yu, Z.C. Wu, R.C. Che, Multidimension-controllable synthesis of MOF-derived Co@N-doped carbon composite with magnetic-dielectric synergy toward strong microwave absorption. Small 16, 2000158 (2020). https://doi.org/10.1002/smll.202000158

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos.51477002 and 51707003), the University Synergy Innovation Program of Anhui Province (GXXT-2019-028).

Author information

Authors and Affiliations

Authors

Contributions

The contributions of all authors to this manuscript are as follows: HX: funding acquisition, project administration, resources, supervision, reviewing, and editing. HJ, WC: conceptualization, methodology, validation, writing, and editing. XJ: validation, writing.

Corresponding author

Correspondence to Honglong Xing.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 228 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, H., Jia, H., Chen, W. et al. Fishing-net-like conductive network built by multi-walled carbon nanotubes and yolk–shell MnO2 with enhanced electromagnetic wave polarized absorption. J Mater Sci: Mater Electron 34, 529 (2023). https://doi.org/10.1007/s10854-022-09789-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09789-z

Navigation