Skip to main content
Log in

Tailoring Sb doping concentration to achieve p-type nanostructured ZnO thin film grown by sol–gel method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Highly c-axis oriented undoped and antimony (Sb) doped zinc oxide (ZnO) thin films were deposited on a glass substrate by the sol–gel spin coating method. Six layers of deposition were repeated with 300 °C heat treatment for each layer then samples were annealed at 500 °C under an ambient atmosphere. Hall effect measurements revealed that 1%, 2%, and 3% Sb-doped ZnO samples presented p-type conductivity, while the 5% Sb-doped ZnO sample had n-type conductivity. Moreover, the resistivity of the samples was about in the order of \({10}^{3}\ \Omega \mathrm{cm}\). All of the deposited thin films have displayed high transparency, around 90%, implying that they are suitable for optoelectronic applications. Further, the near UV absorption edge moved to the lower wavelength side, causing the bandgap to expand from 3.255 to 3.269 eV. PL spectrum showed that a near band edge UV emission and two broadband peaks detected around 500 nm and 595 nm tend to disappear with Sb doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. D.C. Look, Recent advances in ZnO materials and devices. Mater. Sci. Eng B. 80, 383–387 (2001). https://doi.org/10.1016/S0921-5107(00)00604-8

    Article  Google Scholar 

  2. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897 (2001). https://doi.org/10.1126/science.1060367

    Article  CAS  Google Scholar 

  3. R. Azimirad, A. Khayatian, S. Safa, M. Almasi Kashi, Enhancing photoresponsivity of ultra violet photodetectors based on Fe doped ZnO/ZnO shell/core nanorods. J. Alloys Compd. 615, 227–233 (2014). https://doi.org/10.1016/j.jallcom.2014.06.157

    Article  CAS  Google Scholar 

  4. Z.K. Tang, G.K.L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films. Appl. Phys. Lett. 72, 3270–3272 (1998). https://doi.org/10.1063/1.121620

    Article  CAS  Google Scholar 

  5. S.B. Bashar, M. Suja, M. Morshed, F. Gao, J. Liu, An Sb-doped p-type ZnO nanowire based random laser diode. Nanotechnology. 27, 065204 (2016). https://doi.org/10.1088/0957-4484/27/6/065204

    Article  CAS  Google Scholar 

  6. B.O. Jung, Y.H. Kwon, D.J. Seo, D.S. Lee, H.K. Cho, Ultraviolet light emitting diode based on p-NiO/n-ZnO nanowire heterojunction. J. Cryst. Growth. 370, 314–318 (2013). https://doi.org/10.1016/j.jcrysgro.2012.10.037

    Article  CAS  Google Scholar 

  7. M. Gabás, P. Díaz-Carrasco, F. Agulló-Rueda, P. Herrero, A.R. Landa-Cánovas, J.R. Ramos-Barrado, High quality ZnO and Ga:ZnO thin films grown onto crystalline Si (100) by RF magnetron sputtering. Sol. Energy Mater. Sol. Cells. 95, 2327–2334 (2011). https://doi.org/10.1016/j.solmat.2011.04.001

    Article  CAS  Google Scholar 

  8. M. Moalem-Banhangi, N. Ghaeni, S. Ghasemi, Saffron derived carbon quantum dot/N-doped ZnO/fulvic acid nanocomposite for sonocatalytic degradation of methylene blue. Synth. Met. 271, 116626 (2021). https://doi.org/10.1016/j.synthmet.2020.116626

    Article  CAS  Google Scholar 

  9. S. Swathi, R. Yuvakkumar, G. Ravi, E.S. Babu, D. Velauthapillai, S.A. Alharbi, Morphological exploration of chemical vapor–deposited P-doped ZnO nanorods for efficient photoelectrochemical water splitting. Ceram. Int. 47, 6521–6527 (2021). https://doi.org/10.1016/j.ceramint.2020.10.237

    Article  CAS  Google Scholar 

  10. S.Y. Wakhare, M.D. Deshpande, Structural, electronic and optical properties of metalloid element (B, Si, Ge, As, Sb, and Te) doped g-ZnO monolayer: A DFT study. J. Mol. Graphics Modell. 101, 107753 (2020). https://doi.org/10.1016/j.jmgm.2020.107753

    Article  CAS  Google Scholar 

  11. C.-Q. Luo, S.-C. Zhu, C. Xu, S. Zhou, C.-H. Lam, F.C.-C. Ling, Room temperature ferromagnetism in Sb doped ZnO. J. Magn. Magn. Mater. 529, 167908 (2021). https://doi.org/10.1016/j.jmmm.2021.167908

    Article  CAS  Google Scholar 

  12. S. Limpijumnong, S.B. Zhang, S.H. Wei, C.H. Park, Doping by large-size-mismatched impurities: the microscopic origin of arsenicor antimony-doped p-type zinc oxide. Phys. Rev. Lett. 92, 155504 (2004). https://doi.org/10.1103/PhysRevLett.92.155504

    Article  CAS  Google Scholar 

  13. S.R. Yousefi, A. Sobhani, M. Salavati-Niasari, A new nanocomposite superionic system (CdHgI4/HgI2): synthesis, characterization and experimental investigation. Adv. Powder Technol. 28, 1258–1262 (2017). https://doi.org/10.1016/j.apt.2017.02.013

    Article  CAS  Google Scholar 

  14. S.R. Yousefi, D. Ghanbari, M. Salavati-Niasari, M. Hassanpour, Photo-degradation of organic dyes: simple chemical synthesis of Ni(OH)2 nanoparticles, Ni/Ni(OH)2 and Ni/NiO magnetic nanocomposites. J. Mater. Sci.: Mater. 27, 1244–1253 (2016). https://doi.org/10.1007/s10854-015-3882-6

    Article  CAS  Google Scholar 

  15. E.H.H. Hasabeldaim, O.M. Ntwaeaborwa, R.E. Kroon, E. Coetsee, H.C. Swart, Luminescence properties of Eu doped ZnO PLD thin films: the effect of oxygen partial pressure. Superlattices Microstruct. 139, 106432 (2020). https://doi.org/10.1016/j.spmi.2020.106432

    Article  CAS  Google Scholar 

  16. R. Nasser, J.-M. Song, H. Elhouichet, Epitaxial growth and properties study of p-type doped ZnO: Sb by PLD. Superlattices Microstruct. 155, 106908 (2021). https://doi.org/10.1016/j.spmi.2021.106908

    Article  CAS  Google Scholar 

  17. Q.C. Bui, B. Salem, H. Roussel, X. Mescot, Y. Guerfi, C. Jiménez, V. Consonni, G. Ardila, Effects of thermal annealing on the structural and electrical properties of ZnO thin films for boosting their piezoelectric response. J. Alloys Compd. 870, 159512 (2021). https://doi.org/10.1016/j.jallcom.2021.159512

    Article  CAS  Google Scholar 

  18. W. Thongsuksai, G. Panomsuwan, A. Rodchanarowan, Fast and convenient growth of vertically aligned ZnO nanorods via microwave plasma-assisted thermal evaporation. Mater. Lett. 224, 50–53 (2018). https://doi.org/10.1016/j.matlet.2018.04.060

    Article  CAS  Google Scholar 

  19. T. Lim, P.S. Mirabedini, K. Jung, P. Alex Greaney, A.A. Martinez-Morales, High-index crystal plane of ZnO nanopyramidal structures: stabilization, growth, and improved photocatalytic performance. Appl. Surf. Sci. 536, 147326 (2021). https://doi.org/10.1016/j.apsusc.2020.147326

    Article  CAS  Google Scholar 

  20. C. Wang, M. Ying, J. Lian, M. Wei, Q. Jiang, Q. Li, Y. Zhang, Z. Xu, Y. Wang, Structural, optical and dielectric properties of (Co and Sm) co-implanting O-polar ZnO films on sapphire substrate. J. Alloys Compd. 876, 160017 (2021). https://doi.org/10.1016/j.jallcom.2021.160017

    Article  CAS  Google Scholar 

  21. B. Abderrahmane, A. Djamila, N. Chaabia, R. Fodil, Improvement of ZnO nanorods photoelectrochemical, optical, structural and morphological characterizations by cerium ions doping. J. Alloys Compd. 829, 154498 (2020). https://doi.org/10.1016/j.jallcom.2020.154498

    Article  CAS  Google Scholar 

  22. S. Bose, C. Chevallier, S. Ould Saad Hamady, D. Horwat, J.-F. Pierson, P. Boulet, T. Gries, T. Aubert, N. Fressengeas, Elaboration of high-transparency ZnO thin films by ultrasonic spray pyrolysis with fast growth rate. Superlattices Microstruct. 156, 106945 (2021). https://doi.org/10.1016/j.spmi.2021.106945

    Article  CAS  Google Scholar 

  23. Z. Li, J. Song, X. Duan, H. Wu, N. Lian, J. Xue, X. Meng, F. Yang, J. Li, Y. Wang, F and Al co-doped zinc oxide thin films deposited by ultrasonic spray pyrolysis: Effects of substrate temperature on physical properties. J. Alloys Compd. 858, 158076 (2021). https://doi.org/10.1016/j.jallcom.2020.158076

    Article  CAS  Google Scholar 

  24. P. Halappa, A. Mathur, M.-H. Delville, C. Shivakumara, Alkali metal ion co-doped Eu3+ activated GdPO4 phosphors: structure and photoluminescence properties. J. Alloys Compd. 740, 1086–1098 (2018). https://doi.org/10.1016/j.jallcom.2018.01.087

    Article  CAS  Google Scholar 

  25. A. Mathur, P. Halappa, C. Shivakumara, Synthesis and characterization of Sm3+ activated La1−xGdxPO4 phosphors for white LEDs applications. J. Mater. Sci.: Mater. 29, 19951–19964 (2018). https://doi.org/10.1007/s10854-018-0125-7

    Article  CAS  Google Scholar 

  26. S.R. Yousefi, A. Sobhani, H.A. Alshamsi, M. Salavati-Niasari, Green sonochemical synthesis of BaDy2NiO5/Dy2O3 and BaDy2NiO5/NiO nanocomposites in the presence of core almond as a capping agent and their application as photocatalysts for the removal of organic dyes in water. RSC Adv. 11, 11500–11512 (2021). https://doi.org/10.1039/D0RA10288A

    Article  CAS  Google Scholar 

  27. S.R. Yousefi, O. Amiri, M. Salavati-Niasari, Control sonochemical parameter to prepare pure Zn0.35Fe2.65O4 nanostructures and study their photocatalytic activity. Ultrason. Sonochem. 58, 104619 (2019). https://doi.org/10.1016/j.ultsonch.2019.104619

    Article  CAS  Google Scholar 

  28. S.R. Yousefi, H.A. Alshamsi, O. Amiri, M. Salavati-Niasari, Synthesis, characterization and application of Co/Co3O4 nanocomposites as an effective photocatalyst for discoloration of organic dye contaminants in wastewater and antibacterial properties. J. Mol. Liq. 337, 116405 (2021). https://doi.org/10.1016/j.molliq.2021.116405

    Article  CAS  Google Scholar 

  29. M.A. Mahdi, S.R. Yousefi, L.S. Jasim, M. Salavati-Niasari, Green synthesis of DyBa2Fe3O7.988/DyFeO3 nanocomposites using almond extract with dual eco-friendly applications: photocatalytic and antibacterial activities. Int. J. Hydrog Energy. 47, 14319–14330 (2022). https://doi.org/10.1016/j.ijhydene.2022.02.175

    Article  CAS  Google Scholar 

  30. S.R. Yousefi, M. Masjedi-Arani, M.S. Morassaei, M. Salavati-Niasari, H. Moayedi, Hydrothermal synthesis of DyMn2O5/Ba3Mn2O8 nanocomposite as a potential hydrogen storage material. Int. J. Hydrogen Energy. 44, 24005–24016 (2019). https://doi.org/10.1016/j.ijhydene.2019.07.113

    Article  CAS  Google Scholar 

  31. S.R. Yousefi, M. Ghanbari, O. Amiri, Z. Marzhoseyni, P. Mehdizadeh, M. Hajizadeh-Oghaz, M. Salavati-Niasari, Dy2BaCuO5/Ba4DyCu3O9.09 S-scheme heterojunction nanocomposite with enhanced photocatalytic and antibacterial activities. J. Am. Ceram. Soc. 104, 2952–2965 (2021). https://doi.org/10.1111/jace.17696

    Article  CAS  Google Scholar 

  32. S.R. Yousefi, D. Ghanbari, M. Salavati-Niasari, Hydrothermal Synthesis of nickel hydroxide nanostructures and flame retardant poly vinyl alcohol and cellulose acetate nanocomposites. J Nanostructures. 6, 80–85 (2016). https://doi.org/10.7508/jns.2016.01.013

    Article  CAS  Google Scholar 

  33. A. Das, G. Das, D. Kabiraj, D. Basak, High conductivity along with high visible light transparency in Al implanted sol-gel ZnO thin film with an elevated figure of merit value as a transparent conducting layer. J. Alloys Compd. 835, 155221 (2020). https://doi.org/10.1016/j.jallcom.2020.155221

    Article  CAS  Google Scholar 

  34. T. Deepa Rani, A. Sakshi Joshi, S. Leela, Studies on structural and optical properties of Cobalt doped ZnO thin films prepared by Sol-gel spin coating technique. Mater. Today: Proc. 43, 3166–3168 (2021). https://doi.org/10.1016/j.matpr.2021.01.658

    Article  CAS  Google Scholar 

  35. R. Biswas, S. Chatterjee, Effect of surface modification via sol-gel spin coating of ZnO nanoparticles on the performance of WO3 photoanode based dye sensitized solar cells. Optik. 212, 164142 (2020). https://doi.org/10.1016/j.ijleo.2019.164142

    Article  CAS  Google Scholar 

  36. V. Guckan, V. Altunal, A. Ozdemir, V. Tsiumra, Y. Zhydachevskyy, Z. Yegingil, Calcination effects on europium doped zinc oxide as a luminescent material synthesized via sol-gel and precipitation methods. J. Alloys Compd. 823, 153878 (2020). https://doi.org/10.1016/j.jallcom.2020.153878

    Article  CAS  Google Scholar 

  37. W. Seol, G. Anoop, H. Park, C.W. Shin, J.Y. Lee, T.Y. Kim, W.S. Kim, H. Joh, S. Samanta, J.Y. Jo, Ferroelectricity in solution-processed V-doped ZnO thin films. J. Alloys Compd. 853, 157369 (2021). https://doi.org/10.1016/j.jallcom.2020.157369

    Article  CAS  Google Scholar 

  38. A.S. Hassanien, A.A. Akl, A.H. Sáaedi, Synthesis, crystallography, microstructure, crystal defects, and morphology of BixZn1−xO nanoparticles prepared by sol–gel technique. CrystEngComm 20, 1716–1730 (2018). https://doi.org/10.1039/C7CE02173A

    Article  CAS  Google Scholar 

  39. N.H. Erdogan, T. Kutlu, N. Sedefoglu, H. Kavak, Effect of Na doping on microstructures, optical and electrical properties of ZnO thin films grown by sol-gel method. J. Alloys Compd. 881, 160554 (2021). https://doi.org/10.1016/j.jallcom.2021.160554

    Article  CAS  Google Scholar 

  40. Y. Cheng, J. Chen, X. Zhang, T. Yu, K. Yang, L. Che, Comprehensive study on Sb-doped zinc oxide films deposited on c-plane Al2O3 substrates. J. Mater. Sci.: Mater. 29, 11280–11285 (2018). https://doi.org/10.1007/s10854-018-9215-9

    Article  CAS  Google Scholar 

  41. S. Tian, D. Zeng, C. Xie, X. Zhao, Direct experimental evidence for SbZn-2VZn complex as the important defect in the Sb-doped ZnO nanocrystals. Mater. Lett. 116, 363–366 (2014). https://doi.org/10.1016/j.matlet.2013.11.070

    Article  CAS  Google Scholar 

  42. A. Osipov, S.A. Kukushkin, N.A. Feoktistov, A. Osipova, N. Venugopal, G.D. Verma, B.K. Gupta, A. Mitra, Structural and optical properties of high quality ZnO thin film on Si with SiC buffer layer. Thin Solid Films 520, 6836–6840 (2012). https://doi.org/10.1016/j.tsf.2012.07.094

    Article  CAS  Google Scholar 

  43. A. Kaphle, M.F. Borunda, P. Hari, Influence of cobalt doping on residual stress in ZnO nanorods. Mater. Sci. Semicond. Process. 84, 131–137 (2018). https://doi.org/10.1016/j.mssp.2018.05.019

    Article  CAS  Google Scholar 

  44. E. Bacaksiz, M. Parlak, M. Tomakin, A. Özçelik, M. Karakız, M. Altunbaş, The effects of zinc nitrate, zinc acetate and zinc chloride precursors on investigation of structural and optical properties of ZnO thin films. J. Alloys Compd. 466, 447–450 (2008). https://doi.org/10.1016/j.jallcom.2007.11.061

    Article  CAS  Google Scholar 

  45. S.V. Mohite, K.Y. Rajpure, Synthesis and characterization of Sb doped ZnO thin films for photodetector application. Opt. Mater. 36, 833–838 (2014). https://doi.org/10.1016/j.optmat.2013.12.007

    Article  CAS  Google Scholar 

  46. A. Zendehnam, M. Mirzaee, S. Miri, Influence of deposition rate on PL spectrum and surface morphology of ZnO nanolayers deposited on Si (100) substrate. Bull. Mater. Sci. 37, 179–183 (2014). https://doi.org/10.1007/s12034-014-0638-5

    Article  CAS  Google Scholar 

  47. V.S. Khomchenko, T.G. Kryshtab, A.K. Savin, L.V. Zavyalova, N.N. Roshchina, V.E. Rodionov, O.S. Lytvyn, V.I. Kushnirenko, V.B. Khachatryan, J.A. Andraca-Adame, Fabrication and properties of ZnO: Cu and ZnO: Ag thin films. Superlattices Microstruct. 42, 94–98 (2007). https://doi.org/10.1016/j.spmi.2007.04.016

    Article  CAS  Google Scholar 

  48. Z. Fang, Y. Wang, D. Xu, Y. Tan, X. Liu, Blue luminescent center in ZnO films deposited on silicon substrates. Opt. Mater. 26, 239–242 (2004). https://doi.org/10.1016/j.optmat.2003.11.027

    Article  CAS  Google Scholar 

  49. S. Ilican, Y. Caglar, M. Caglar, F. Yakuphanoglu, J. Cui, Preparation of Sb-doped ZnO nanostructures and studies on some of their properties. Phys. E: Low-Dimens. Syst. Nanostructures. 41, 96–100 (2008). https://doi.org/10.1016/j.physe.2008.06.018

    Article  CAS  Google Scholar 

  50. S. Tian, D. Zeng, C. Xie, X. Zhao, Direct experimental evidence for SbZn–2VZn complex as the important defect in the Sb-doped ZnO nanocrystals. Mater. Lett. 116, 363–366 (2014). https://doi.org/10.1016/j.matlet.2013.11.070

    Article  CAS  Google Scholar 

  51. T. Andelman, Y. Gong, M. Polking, M. Yin, I. Kuskovsky, G. Neumark, S. O’Brien, Morphological control and photoluminescence of zinc oxide nanocrystals. J. Phys. Chem. B 109, 14314–14318 (2005). https://doi.org/10.1021/jp050540o

    Article  CAS  Google Scholar 

  52. A.E. Kasapoğlu, S. Habashyani, A. Baltakesmez, D. İskenderoğlu, E. Gür, The effect of the change in the amount of Sb doping in ZnO nanorods for hydrogen gas sensors. Int. J. Hydrog Energy. (2021). https://doi.org/10.1016/j.ijhydene.2021.03.229

    Article  Google Scholar 

  53. D.P. Joseph, U. Devarajan, J.M. Fernandes, R. Ramarajan, M. Kovendhan, N. Purushothamreddy, R. Muniramaiah, C. Venkateswaran, Lithium-antimony co-doping induced morphology transition in spray deposited SnO2 thin films. Surf Interfaces. 23, 100918 (2021). https://doi.org/10.1016/j.surfin.2020.100918

    Article  CAS  Google Scholar 

  54. M. Hjiri, M.S. Aida, O.M. Lemine, L. El Mir, Study of defects in Li-doped ZnO thin films. Mater. Sci. Semicond. Process. 89, 149–153 (2019). https://doi.org/10.1016/j.mssp.2018.09.010

    Article  CAS  Google Scholar 

  55. T. Yang, B. Yao, T.T. Zhao, G.Z. Xing, H. Wang, H.L. Pan, R. Deng, Y.R. Sui, L.L. Gao, H.Z. Wang, T. Wu, D.Z. Shen, Sb doping behavior and its effect on crystal structure, conductivity and photoluminescence of ZnO film in depositing and annealing processes. J. Alloys Compd. 509, 5426–5430 (2011). https://doi.org/10.1016/j.jallcom.2011.02.080

    Article  CAS  Google Scholar 

  56. G. Yuan, Z. Ye, L. Zhu, Y. Zeng, J. Huang, Q. Qian, J. Lu, p-Type conduction in Al–N co-doped ZnO films. Mater. Lett. 58, 3741–3744 (2004). https://doi.org/10.1016/j.matlet.2004.02.056

    Article  CAS  Google Scholar 

  57. X. Yan, D. Hu, H. Li, L. Li, X. Chong, Y. Wang, Nanostructure and optical properties of M doped ZnO (M=Ni, Mn) thin films prepared by sol–gel process. Physica B 406, 3956–3962 (2011). https://doi.org/10.1016/j.physb.2011.07.037

    Article  CAS  Google Scholar 

  58. U. Ilyas, R.S. Rawat, T.L. Tan, P. Lee, R. Chen, H.D. Sun, L. Fengji, S. Zhang, Oxygen rich p-type ZnO thin films using wet chemical route with enhanced carrier concentration by temperature-dependent tuning of acceptor defects. J. Appl. Phys. 110, 093522 (2011). https://doi.org/10.1063/1.3660284

    Article  CAS  Google Scholar 

  59. M. Chen, X. Wang, Y.H. Yu, Z.L. Pei, X.D. Bai, C. Sun, R.F. Huang, L.S. Wen, X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films. Appl. Surf. Sci. 158, 134–140 (2000). https://doi.org/10.1016/S0169-4332(99)00601-7

    Article  CAS  Google Scholar 

  60. Z.G. Wang, X.T. Zu, S. Zhu, L.M. Wang, Green luminescence originates from surface defects in ZnO nanoparticles. Phys. E: Low-Dimens. Syst. Nanostructures. 35, 199–202 (2006). https://doi.org/10.1016/j.physe.2006.07.022

    Article  CAS  Google Scholar 

  61. J. Li, Y. Li, S. Li, M. Zhu, J. Zhang, Y. Li, Y. He, W. Li, Zinc interstitial and oxygen vacancy mediated high Curie-temperature ferromagnetism in Ag-doped ZnO. Ceram. Int. 46, 18639–18647 (2020). https://doi.org/10.1016/j.ceramint.2020.04.176

    Article  CAS  Google Scholar 

  62. A.M. Alsmadi, B. Salameh, L.L. Kerr, K.F. Eid, Influence of Antimony doping on the electronic, optical and luminescent properties of ZnO microrods. Physica B 545, 519–526 (2018). https://doi.org/10.1016/j.physb.2018.07.007

    Article  CAS  Google Scholar 

  63. D.J. Morgan, Metallic antimony (Sb) by XPS. Surf. Sci. Spectra. 24, 024004 (2017). https://doi.org/10.1116/1.4994636

    Article  CAS  Google Scholar 

  64. T. Lei, C. Liu, J.-L. Zhao, J.-M. Li, Y.-P. Li, J.-O. Wang, R. Wu, H.-J. Qian, H.-Q. Wang, K. Ibrahim, Electronic structure of antimonene grown on Sb2Te3 (111) and Bi2Te3 substrates. J. Appl. Phys. 119, 015302 (2016). https://doi.org/10.1063/1.4939281

    Article  CAS  Google Scholar 

  65. S.-D. Baek, P. Biswas, J.-W. Kim, Y.C. Kim, T.I. Lee, J.-M. Myoung, Low-temperature facile synthesis of Sb-doped p-type ZnO nanodisks and its application in homojunction light-emitting diode. ACS Appl. Mater. Interfaces. 8, 13018–13026 (2016). https://doi.org/10.1021/acsami.6b03258

    Article  CAS  Google Scholar 

  66. O. Lupan, L. Chow, L.K. Ono, B.R. Cuenya, G. Chai, H. Khallaf, S. Park, A. Schulte, Synthesis and characterization of Ag- or Sb-doped ZnO Nanorods by a facile hydrothermal route. J. Phys. Chem. C. 114, 12401–12408 (2010). https://doi.org/10.1021/jp910263n

    Article  CAS  Google Scholar 

  67. W.W. Zhong, F.M. Liu, L.G. Cai, C.C. Zhou, P. Ding, H. Zhang, Annealing effects of co-doping with Al and Sb on structure and optical-electrical properties of the ZnO thin films. J. Alloys Compd. 499, 265–268 (2010). https://doi.org/10.1016/j.jallcom.2010.03.184

    Article  CAS  Google Scholar 

  68. M. Rusop, K. Uma, T. Soga, T. Jimbo, Post-growth annealing of zinc oxide thin films pulsed laser deposited under enhanced oxygen pressure on quartz and silicon substrates. Mater Sci Eng B. 127, 150–153 (2006). https://doi.org/10.1016/j.mseb.2005.10.012

    Article  CAS  Google Scholar 

  69. J. Tauc, Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 3, 37–46 (1968)

    Article  CAS  Google Scholar 

  70. S. Rana, A. Singh, S. Singh, Characterization and optical studies of pure and Sb doped ZnO nanoparticles. Int. J Nanoelectron Mater. 6, 45–57 (2013)

    Google Scholar 

  71. B.D. Viezbicke, S. Patel, B.E. Davis, D.P. Birnie III., Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. Phys. Status Solidi B. 252, 1700–1710 (2015). https://doi.org/10.1002/pssb.201552007

    Article  CAS  Google Scholar 

  72. N.H. Sheeba, S.C. Vattappalam, P.V. Sreenivasan, S. Mathew, R.R. Philip, Influence of Sb incorporation on optical, electrical and gas sensing properties of transparent ZnO thin films. Mater. Chem. Phys. 179, 137–142 (2016). https://doi.org/10.1016/j.matchemphys.2016.05.019

    Article  CAS  Google Scholar 

  73. H. Benelmadjat, B. Boudine, O. Halimi, M. Sebais, Fabrication and characterization of pure and Sn/Sb-doped ZnO thin films deposited by sol–gel method. Opt. Laser Technol. 41, 630–633 (2009). https://doi.org/10.1016/j.optlastec.2008.09.011

    Article  CAS  Google Scholar 

  74. B. Kulyk, B. Sahraoui, V. Figà, B. Turko, V. Rudyk, V. Kapustianyk, Influence of Ag, Cu dopants on the second and third harmonic response of ZnO films. J. Alloys Compd. 481, 819–825 (2009). https://doi.org/10.1016/j.jallcom.2009.03.117

    Article  CAS  Google Scholar 

  75. B. Khalfallah, I. Riahi, F. Chaabouni, Effect of Cu doping on the structural, optical and electrical properties of ZnO thin films grown by RF magnetron sputtering: application to solar photocatalysis. Opt. Quant. Electron. 53, 238 (2021). https://doi.org/10.1007/s11082-021-02861-8

    Article  CAS  Google Scholar 

  76. T.K. Pathak, V. Kumar, H.C. Swart, L.P. Purohit, Effect of doping concentration on the conductivity and optical properties of p-type ZnO thin films. Physica B 480, 31–35 (2016). https://doi.org/10.1016/j.physb.2015.09.033

    Article  CAS  Google Scholar 

  77. D. Wang, J. Zhou, G. Liu, Effect of Li-doped concentration on the structure, optical and electrical properties of p-type ZnO thin films prepared by sol–gel method. J. Alloys Compd. 481, 802–805 (2009). https://doi.org/10.1016/j.jallcom.2009.03.111

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Çukurova University (Project Number FBA-2018-11222).

Funding

Funding was provided by Çukurova Üniversitesi, FBA-2018-11222, Necdet H. ERDOGAN

Author information

Authors and Affiliations

Authors

Contributions

NS: Conceptualization, Methodology, Formal analysis, Investigation, Resources, Writing—original draft, Writing—review & editing, Project administration. TK: Methodology, Formal analysis, Investigation NH Erdogan: Methodology, Formal analysis, Investigation, Writing—review & editing, Funding acquisition. HK: Methodology, Resources, Writing—review & editing.

Corresponding author

Correspondence to Nazmi Sedefoglu.

Ethics declarations

Competing interests

The authors declare no known competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedefoglu, N., Erdogan, N.H., Kutlu, T. et al. Tailoring Sb doping concentration to achieve p-type nanostructured ZnO thin film grown by sol–gel method. J Mater Sci: Mater Electron 34, 232 (2023). https://doi.org/10.1007/s10854-022-09718-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09718-0

Navigation