Skip to main content
Log in

Study of current conduction mechanism and resistive switching stability in the PVdF-HFP-based memristor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The electrochemical metallization (ECM) memory using polymer materials has attracted much attention for the development of future information devices. Particularly, the study of ionic transportation and current conduction mechanism in the metal–insulator-metal (MIM) structured device is crucial to realize the filament growth behaviour associated with the resistive switching memory characteristics. This work demonstrates the MIM device using the poly (vinylidene fluoride-hexafluoro propylene) (PVdF-HFP) sandwiched between an electrochemically active Ag electrode and an inert electrode (Au). The asymmetric electrode configuration of the Au/Ag/PVdF-HFP/Au device revealed bipolar-resistive switching behaviour for more than 102 continuous sweep cycles with a low SET/RESET voltage of + 1.26 V/ − 0.35 V, respectively. Note that, the device exhibited remarkably higher ON/OFF resistance ratio of ~ 107 with high data retention time for more than 104 s. Analysis of current conduction in the Au/Ag/PVdF-HFP/Au device shows that the electron transport is a combined effect of space charge limited (I ∝ Vα, α ~ 2), trap-filled charge limited (I ∝ Vα, α > 2), and ohmic conduction mechanism (I ∝ Vα, α ~ 1), which majorly altered between one cycle to another. Depth profiling X-ray photoelectron spectroscopy confirms that the conducting filament growth process varies from the initial to the final sweep cycle. It interprets a cycle-to-cycle variation in the resistive switching behaviour and its stability majorly constitutes by the variation of current conduction mechanism in the PVdF-HFP-based memristor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data are available from the corresponding author upon request.

References

  1. W.P. Lin, S.J. Liu, T. Gong, Q. Zhao, W. Huang, Polymer-based resistive memory materials and devices. Adv. Mater. 26, 570 (2014)

    Article  CAS  Google Scholar 

  2. Y. Chen, G. Liu, C. Wang, W. Zhang, R.-W. Li, L. Wang, Polymer memristor for information storage and neuromorphic applications. Mater. Horizons 1, 489 (2014)

    Article  CAS  Google Scholar 

  3. O. Bohnke, G. Frand, M. Rezrazi, C. Rousselot, C. Truche, Fast ion transport in new lithium electrolytes gelled with PMMA. 1: influence of polymer concentration. Solid State Ion. 66, 97 (1993)

    Article  CAS  Google Scholar 

  4. H.-W. Chen, T.-P. Lin, F.-C. Chang, Ionic conductivity enhancement of the plasticized PMMA/LiClO4 polymer nanocomposite electrolyte containing clay. Polymer 43, 5281 (2002)

    Article  CAS  Google Scholar 

  5. R. Waser, R. Dittmann, G. Staikov, K. Szot, Redox-based resistive switching memories—nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632 (2009)

    Article  CAS  Google Scholar 

  6. S. Moller, C. Perlov, W. Jackson, C. Taussig, S.R. Forrest, A polymer/semiconductor write-once read-many-times memory. Nature 426, 166 (2003)

    Article  Google Scholar 

  7. B. Cho, S. Song, Y. Ji, T.W. Kim, T. Lee, Organic resistive memory devices: performance enhancement, integration, and advanced architectures. Adv. Funct. Mater. 21, 2806 (2011)

    Article  CAS  Google Scholar 

  8. K. Krishnan, M. Aono, K. Terabe, T. Tsuruoka, Significant roles of the polymer matrix in the resistive switching behavior of polymer-based atomic switches. J. Phys. D: Appl. Phys. 52, 445301 (2019)

    Article  CAS  Google Scholar 

  9. Z. Wang, L. Wang, M. Nagai, L. Xie, M. Yi, W. Huang, Nanoionics-enabled memristive devices: strategies and materials for neuromorphic applications. Adv. Electron. Mater. 3, 1600510 (2017)

    Article  Google Scholar 

  10. C.J. Park, S.W. Han, M.W. Shin, Laser-assisted interface engineering for functional interfacial layer of Al/ZnO/Al resistive random access memory (RRAM). ACS Appl. Mater. Interfaces 12(28), 32131 (2020)

    Article  CAS  Google Scholar 

  11. M. Lübben, P. Karakolis, V. Ioannou-Sougleridis, P. Normand, P. Dimitrakis, I. Valov, Graphene-modified interface controls transition from VCM to ECM switching modes in Ta/TaOx based memristive devices. Adv. Mater. 27, 6202 (2015)

    Article  Google Scholar 

  12. Y. Li, Q. Qian, X. Zhu, Y. Li, M. Zhang, Recent advances in organic-based materials for resistive memory applications. InfoMat 2, 995–1033 (2020)

    Article  CAS  Google Scholar 

  13. M. Wu, Y. Ting, J. Chen, W. Wu, Low power consumption nanofilamentary ECM and VCM cells in a single sidewall of high-density VRRAM arrays. Adv. Sci. 6, 1902363 (2019)

    Article  CAS  Google Scholar 

  14. E. Yalon, I. Karpov, V. Karpov, I. Riess, D. Kalaev, D. Ritter, Detection of the insulating gap and conductive filament growth direction in resistive memories. Nanoscale 7, 15434 (2015)

    Article  CAS  Google Scholar 

  15. I. Valov, R. Waser, J.R. Jameson, M.N. Kozicki, Electrochemical metallization memories—fundamentals, applications, prospects. Nanotechnology 22, 254003 (2011)

    Article  Google Scholar 

  16. Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan, W. Lu, Observation of conducting filament growth in nanoscale resistive memories. Nat. Commun. 3, 732 (2012)

    Article  Google Scholar 

  17. K. Krishnan, T. Tsuruoka, C. Mannequin, M. Aono, Mechanism for conducting filament growth in self-assembled polymer thin films for redox-based atomic switches. Adv. Mater. 28, 640 (2016)

    Article  CAS  Google Scholar 

  18. D.H. Kwon, K.M. Kim, J.H. Jang, J.M. Jeon, M.H. Lee, G.H. Kim, X.S. Li, G.S. Park, B. Lee, S. Han, M. Kim, C.S. Hwang, Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotechnol. 5, 148 (2010)

    Article  CAS  Google Scholar 

  19. I. Valov, E. Linn, S. Tappertzhofen, S. Schmelzer, J. van den Hurk, F. Lentz, R. Waser, Nanobatteries in redox-based resistive switches require extension of memristor theory. Nat. Commun. 4, 1771 (2013)

    Article  CAS  Google Scholar 

  20. Y. Yang, R. Huang, Probing memristive switching in nanoionic devices. Nat. Electron. 1, 274 (2018)

    Article  Google Scholar 

  21. K. Krishnan, M. Muruganathan, T. Tsuruoka, H. Mizuta, M. Aono, Highly reproducible and regulated conductance quantization in a polymer-based atomic switch. Adv. Funct. Mater. 27, 1605104 (2017)

    Article  Google Scholar 

  22. Q. Chen, G. Liu, W. Xue, J. Shang, S. Gao, X. Yi, Y. Lu, X. Chen, M. Tang, X. Zheng, R.-W. Li, Controlled construction of atomic point contact with 16 quantized conductance states in oxide resistive switching memory. ACS Appl. Electron. Mater. 1, 789 (2019)

    Article  CAS  Google Scholar 

  23. W. Zhang, C. Wang, G. Liu, X. Zhu, X. Chen, L. Pan, H. Tan, W. Xue, Z. Ji, J. Wang, C. Yu, R.W. Li, Thermally-stable resistive switching with a large ON/OFF ratio achieved in poly(triphenylamine). Chem. Commun. 50, 11856 (2014)

    Article  CAS  Google Scholar 

  24. K. Krishnan, A. Gubicza, M. Aono, K. Terabe, I. Valov, T. Tsuruoka, Impact of moisture absorption on the resistive switching characteristics of a polyethylene oxide-based atomic switch. J. Mater. Chem. C 9, 11198 (2021)

    Article  CAS  Google Scholar 

  25. Z. Wang, C. Li, P. Lin, M. Rao, Y. Nie, W. Song, Q. Qiu, Y. Li, P. Yan, J.P. Strachan, N. Ge, N. McDonald, Q. Wu, M. Hu, H. Wu, R.S. Williams, Q. Xia, J.J. Yang, In situ training of feed-forward and recurrent convolutional memristor networks. Nat. Mach. Intell. 1, 434 (2019)

    Article  Google Scholar 

  26. L. Zhao, H.Y. Chen, S.C. Wu, Z. Jiang, S. Yu, T.H. Hou, H.S.P. Wong, Y. Nishi, Multi-level control of conductive nano-filament evolution in HfO2 ReRAM by pulse-train operations. Nanoscale 6, 5698 (2014)

    Article  CAS  Google Scholar 

  27. M. Lanza, R. Waser, D. Ielmini, J.J. Yang, L. Goux, J. Sun, A.J. Kenyon, A. Mehonic, S. Spiga, V. Rana, S. Wiefels, S. Menzel, I. Valov, M.A. Villena, E. Miranda, X. Jing, F. Campabadal, M.B. Gonzalez, F. Aguirre, F. Palumbo, K. Zhu, J.B. Roldan, F.M. Puglisi, L. Larcher, T. Hou, T. Prodromakis, Y. Yang, P. Huang, T. Wan, Y. Chai, K.L. Pey, N. Raghavan, S. Duen, T. Wang, Q. Xia, S. Pazos, Standards for the characterization of endurance in resistive switching devices. ACS Nano 15(11), 17214 (2021)

    Article  CAS  Google Scholar 

  28. A.M. Rana, T. Akbar, M. Ismail, E. Ahmad, F. Hussain, I. Talib, M. Imran, K. Mehmood, K. Iqbal, M.Y. Nadeem, Endurance and cycle-to-cycle uniformity improvement in tri-layered CeO2/Ti/CeO2 resistive switching devices by changing top electrode material. Sci. Rep. 7, 39539 (2017)

    Article  CAS  Google Scholar 

  29. J. Jang, Y. Song, D. Yoo, K. Cho, Y. Kim, J. Pak, M. Min, T. Lee, Energy consumption estimation of organic nonvolatile memory devices on a flexible plastic substrate. Adv. Electr. Mater. 1, 1500186 (2015)

    Article  Google Scholar 

  30. K. Krishnan, M. Aono, T. Tsuruoka, Kinetic factors determining conducting filament formation in solid polymer electrolyte based planar devices. Nanoscale 8, 13976 (2016)

    Article  CAS  Google Scholar 

  31. S.H. Lee, H.L. Park, M.H. Kim, S. Kang, S.D. Lee, Interfacial triggering of conductive filament growth in organic flexible memristor for high reliability and uniformity. ACS Appl. Mater. Interfaces 11, 30108 (2019)

    Article  CAS  Google Scholar 

  32. M.G. Nair, S.R. Mohapatra, M.-R. Garda, B. Patanair, A.S. Fourcin, S. Thomas, Role of protic ionic liquid concentration in proton conducting polymer electrolytes for improved electrical and thermal properties. Mater. Res. Express 7, 064005 (2020)

    Article  CAS  Google Scholar 

  33. G.-Y. Li, J. Li, Z.-J. Li, Y.-P. Zhang, X. Zhang, Z.-J. Wang, W.-P. Han, B. Sun, Y.-Z. Long, H.-D. Zhang, Hierarchical PVDF-HFP/ZnO composite nanofiber–based highly sensitive piezoelectric sensor for wireless workout monitoring. Adv. Compos. Hybrid Mater. 5, 766–775 (2021)

    Article  Google Scholar 

  34. J. Pitawala, M.A. Navarra, B. Scrosati, P. Jacobsson, A. Matic, Structure and properties of Li-ion conducting polymer gel electrolytes based on ionic liquids of the pyrrolidinium cation and the bis(trifluoromethanesulfonyl)imide anion. J. Power Sources 245, 830 (2014)

    Article  CAS  Google Scholar 

  35. S. Das, A. Ghosh, Structure, ion transport, and relaxation dynamics of polyethylene oxide/poly (vinylidene fluoride co-hexafluoropropylene)—lithium bis(trifluoromethane sulfonyl) imide blend polymer electrolyte embedded with ionic liquid. J. Appl. Phys. 119, 095101 (2016)

    Article  Google Scholar 

  36. L.M. McGrath, J. Jones, E. Carey, J.F. Rohan, Ionic liquid based polymer gel electrolytes for use with germanium thin film anodes in lithium ion batteries. Chem. Open 8, 1429 (2019)

    CAS  Google Scholar 

  37. K. Polat, Energy harvesting from a thin polymeric film based on PVDF-HFP and PMMA blend. Appl. Phys. A Mater. Sci. Process. 126, 497 (2020)

    Article  CAS  Google Scholar 

  38. S. Wu, T. Tsuruoka, K. Terabe, T. Hasegawa, J.P. Hill, K. Ariga, M. Aono, A polymer-electrolyte-based atomic switch. Adv. Funct. Mater. 21, 93 (2011)

    Article  CAS  Google Scholar 

  39. S. Ge, Y. Wang, Z. Xiang, Y. Cui, Reset voltage-dependent multilevel resistive switching behavior in CsPb1–xBixI3 perovskite-based memory device. ACS Appl. Mater. Interfaces 10, 24620 (2018)

    Article  CAS  Google Scholar 

  40. G. Ding, K. Zeng, K. Zhou, Z. Li, Y. Zhou, Y. Zhai, L. Zhou, X. Chen, S.T. Han, Configurable multi-state non-volatile memory behaviors in Ti3C2 nanosheets. Nanoscale 11, 7102 (2019)

    Article  CAS  Google Scholar 

  41. X. Zhu, W. Su, Y. Liu, B. Hu, L. Pan, W. Lu, J. Zhang, R.W. Li, Observation of conductance quantization in oxide-based resistive switching memory. Adv. Mater. 24, 3941 (2012)

    Article  CAS  Google Scholar 

  42. Y. Park, M.-K. Kim, J.-S. Lee, Emerging memory devices for artificial synapses. J. Mater. Chem. C 8, 9163 (2020)

    Article  CAS  Google Scholar 

  43. E.W. Lim, R. Ismail, Conduction mechanism of valence change resistive switching memory: a survey. Electronics 4, 586 (2015)

    Article  CAS  Google Scholar 

  44. A.S. Sokolov, Y.-R. Jeon, S. Kim, B. Ku, D. Lim, H. Han, M.G. Chae, J. Lee, B.G. Ha, C. Choi, Influence of oxygen vacancies in ALD HfO2-x thin films on non-volatile resistive switching phenomena with a Ti/HfO2-x/Pt structure. Appl. Surf. Sci. 434, 822 (2017)

    Article  Google Scholar 

  45. W. Zhu, T.P. Chen, Y. Liu, S. Fung, Conduction mechanisms at low- and high-resistance states in aluminum/anodic aluminum oxide/aluminum thin film structure. J. Appl. Phys. 112, 063706 (2012)

    Article  Google Scholar 

  46. Y.Q. Li, R.C. Fang, A.M. Zheng, Y.Y. Chu, X. Tao, H.H. Xu, S.J. Ding, Y.Z. Shen, Nonvolatile memory devices based on polyimides bearing noncoplanar twisted biphenyl units containing carbazole and triphenylamine side-chain groups. J. Mater. Chem. 21, 15643 (2011)

    Article  CAS  Google Scholar 

  47. R. Ge, X. Wu, M. Kim, J. Shi, S. Sonde, L. Tao, Y. Zhang, J.C. Lee, D. Akinwande, Atomristor: nonvolatile resistance switching in atomic sheets of transition metal dichalcogenides. Nano Lett. 18, 434 (2018)

    Article  CAS  Google Scholar 

  48. Y.C. Lai, D.Y. Wang, I.S. Huang, Y.T. Chen, Y.H. Hsu, T.Y. Lin, H.F. Meng, T.C. Chang, Y.J. Yang, C.C. Chen, F.C. Hsu, Y.F. Chen, Low operation voltage macromolecular composite memory assisted by graphene nanoflakes. J. Mater. Chem. C 1, 552 (2013)

    Article  CAS  Google Scholar 

  49. W. Han, T. Kim, B. Yoo, H.-H. Park, Tunable dielectric properties of poly(vinylidenefluoride-co-hexafluoropropylene) films with embedded fluorinated barium strontium titanate nanoparticles. Sci. Rep. 8, 4086 (2018)

    Article  Google Scholar 

  50. X. Guo, J. Liu, L. Cao, Q. Liang, S. Lei, Nonvolatile memory device based on copper polyphthalocyanine thin films. ACS Omega 4, 10419 (2019)

    Article  CAS  Google Scholar 

  51. D.I. Son, D.H. Park, W.K. Choi, S.-H. Cho, W.-T. Kim, T.W. Kim, Carrier transport in flexible organic bistable devices of ZnO nanoparticles embedded in an insulating poly(methyl methacrylate) polymer layer. Nanotechnology 20, 195203 (2009)

    Article  Google Scholar 

  52. Y. Zhou, S.-T. Han, Y. Yan, L. Zhou, L.-B. Huang, J. Zhuang, P. Sonar, V.A.L. Roy, Ultra-flexible nonvolatile memory based on donor-acceptor diketopyrrolopyrrole polymer blends. Sci. Rep. 5, 10683 (2015)

    Article  CAS  Google Scholar 

  53. C. Oliveira, C.R. Chaves, P. Bargiela, M.D.G.C. da Rocha, A.F. da Silva, J.F.D. Chubaci, M. Boström, C. Persson, M. Malta, Surface studies of the chemical environment in gold nanorods supported by X-ray photoelectron spectroscopy (XPS) and ab initio calculations. J. Mater. Res. Technol. 15, 768–776 (2021)

    Article  CAS  Google Scholar 

  54. L. Kong, B. Dasgupta, Y. Ren, P.K. Mohseni, M. Hong, X. Li, W.K. Chim, S.Y. Chiam, Evidences for redox reaction driven charge transfer and mass transport in metal-assisted chemical etching of silicon. Sci. Rep. 6, 36582 (2016)

    Article  CAS  Google Scholar 

  55. C.Y. Dong, D.S. Shang, L. Shi, J.R. Sun, B.G. Shen, F. Zhuge, R.W. Li, W. Chen, Roles of silver oxide in the bipolar resistance switching devices with silver electrode. Appl. Phys. Lett. 98, 072107 (2011)

    Article  Google Scholar 

  56. I. Roppolo, M. Castellino, K. Bejtka, G. Rizza, D. Perrone, P. Coulon, A. Chiappone, K. Rajan, S. Bocchini, C. Ricciardi, C.F. Pirri, A. Chiolerio, Resistive switching in polymer nanocomposites by matrix-controlled in situ nanoparticles generation. J. Phys. Chem. C 121, 14285 (2017)

    Article  CAS  Google Scholar 

  57. N. Feng, Q. Wang, A. Zheng, Z. Zhang, J. Fan, S.-B. Liu, J.-P. Amoureux, F. Deng, Understanding the high photocatalytic activity of (B, Ag)-Codoped TiO2 under solar-light irradiation with XPS, solid-state NMR, and DFT calculations. J. Am. Chem. Soc. 135, 1607 (2013)

    Article  CAS  Google Scholar 

  58. K. Rajan, A. Chiappone, D. Perrone, S. Bocchini, I. Roppolo, K. Bejtka, M. Castellino, C.F. Pirri, C. Ricciardi, A. Chiolerio, Ionic liquid-enhanced soft resistive switching devices. RSC Adv. 6, 94128–94138 (2016)

    Article  CAS  Google Scholar 

  59. K. Rajan, S. Bocchini, A. Chiappone, I. Roppolo, D. Perrone, M. Castellino, K. Bejtka, M. Lorusso, C. Ricciardi, C.F. Pirri, A. Chiolerio, WORM and bipolar inkjet printed resistive switching devices based on silver nanocomposites. Flex. Print. Electron. 2, 024002 (2017)

    Article  Google Scholar 

  60. M.G. Nair, M. Malakar, S.R. Mohapatra, A. Chowdhury, Synthesis of ZnO nanorods and observation of resistive switching memory in ZnO based polymer nanocomposites. AIP Conf. Proc. (2018). https://doi.org/10.1063/1.5032506

    Article  Google Scholar 

  61. K. Rajan, I. Roppolo, K. Bejtka, A. Chiappone, S. Bocchini, D. Perrone, C.F. Pirri, C. Ricciardi, A. Chiolerio, Performance comparison of hybrid resistive switching devices based on solution-processable nanocomposites. Appl. Surf. Sci. 443, 475–483 (2018)

    Article  CAS  Google Scholar 

  62. A. Chiappone, M. Gillono, M. Castellino, K. Bejtka, K. Rajan, I. Roppolo, D. Perrone, S. Bocchini, C. Ricciardi, C.F. Pirri, A. Chiolerio, In situ generation of silver nanoparticles in PVDF for the development of resistive switching devices. Appl. Surf. Sci. 455, 418–424 (2018)

    Article  CAS  Google Scholar 

  63. R. Deepak, M.G. Deb, S. Nair, A.L. Halder, S.R. Sharma, Mohapatra, Liquid phase exfoliation of MoS2 nano-sheets and observation of resistive switching memory in MoS2 Nano-sheets-PVDF-HFP composite films. Mater. Today Proc. 18, 5447–5453 (2019)

    Article  CAS  Google Scholar 

  64. K. Rajan, S. Bocchini, A. Chiappone, I. Roppolo, D. Perrone, K. Bejtka, C. Ricciardi, C.F. Pirri, A. Chiolerio, Spin-coated silver nanocomposite resistive switching devices. Microelectron. Eng. 168, 27–31 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. KK would like to thank Science and Engineering Research Board (SERB) and Department of Science & Technology (DST), India to carry out this work under early career research (ECR/2017/002615) and DST inspire faculty scheme (DST/INSPIRE/04/2016/000246).

Funding

This work was supported by Department of Science & Technology (DST), India through the DST inspire faculty scheme (DST/INSPIRE/04/ 2016/000246), and Science and Engineering Research Board (SERB) through the Early Career Research award (ECR/2017/002615).

Author information

Authors and Affiliations

Authors

Contributions

The authors KK and SV have contributed for preparing the manuscript. The materials preparation, device fabrication, data collection, interpretation, and the manuscript construction was performed by KK. All authors have read and approved the final manuscript for publication.

Corresponding author

Correspondence to Karthik Krishnan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnan, K., Vijayaraghavan, S. Study of current conduction mechanism and resistive switching stability in the PVdF-HFP-based memristor. J Mater Sci: Mater Electron 34, 211 (2023). https://doi.org/10.1007/s10854-022-09697-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09697-2

Navigation