Skip to main content
Log in

Structural, spectroscopic and electrical properties of liquid phase exfoliated few layered two-dimensional tungsten disulfide (WS2) using anionic surfactant

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Surfactant assisted liquid phase exfoliation process is used in the synthesis of hexagonal crystals of a few layered 2H tungsten disulfide (WS2) nanosheets. The synthesis of few layered WS2 nanosheets from bulk WS2 powder is accomplished in a facile and eco-friendly manner by liquid phase exfoliation (LPE) technique. The LPE is assisted by an anionic surfactant, namely sodium dodecyl benzene sulfonate (SDBS) in deionized (DI) water at room temperature. Characterization of the exfoliated WS2 nanosheets was done by various spectroscopic measurements, namely, Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) and UV–Vis to determine the surface morphology and number of layers present in the exfoliated nanosheets. The XRD data confirm that the exfoliated nanoflakes are crystalline hexagonal structure, oriented along the direction of the lattice constant of c-axis which is in good agreement with the HRTEM analysis. Furthermore, the AFM and SEM reveal the formation of smooth and continuous nanosheets consisting of crystalline hexagonal flakes with lateral size 50–500 nm. It is also evident that the concentration of the exfoliating agent (SDBS) influences the splitting of the nanosheet from the bulk sample accelerating exfoliation process. Finally, the conductive nature of the drop casted exfoliated thin films WS2 deposited on the copper interdigitated electrodes (IEDs) is measured in the temperature range of room temperature (RT)—100 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. T. Hu, X. Mei, Y. Wang, X. Weng, R. Liang, M. Wei, Sci. Bull. 64(22), 1707–1727 (2019)

    Article  CAS  Google Scholar 

  2. M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh, H. Zhang, Nat. Chem. 5(4), 263–275 (2013)

    Article  Google Scholar 

  3. J.R. Brent, N. Savjani, P. O’Brien, Prog. Mater Sci. 89, 411–478 (2017)

    Article  CAS  Google Scholar 

  4. R.J. Toh, Z. Sofer, J. Luxa, D. Sedmidubský, M. Pumera, Chem. Commun. 53(21), 3054–3057 (2017)

    Article  CAS  Google Scholar 

  5. H. Zeng, G.B. Liu, J. Dai, Y. Yan, B. Zhu, R. He, L. Xie, S. Xu, X. Chen, W. Yao, X. Cui, Sci. Rep. 3(1), 1–5 (2013)

    Google Scholar 

  6. A.L. Elías, N. Perea-López, A. Castro-Beltrán, A. Berkdemir, R. Lv, S. Feng, A.D. Long, T. Hayashi, Y.A. Kim, M. Endo, H.R. Gutiérrez, ACS Nano 7(6), 5235–5242 (2013)

    Article  Google Scholar 

  7. A. Berkdemir, H.R. Gutiérrez, A.R. Botello-Méndez, N. Perea-López, A.L. Elías, C.I. Chia, B. Wang, V.H. Crespi, F. López-Urías, J.C. Charlier, H. Terrones, Sci. Rep. 3(1), 1–8 (2013)

    Article  Google Scholar 

  8. Z.Y. Zhu, Y.C. Cheng, U. Schwingenschlögl, Phys. Rev. B 84(15), 153402 (2011)

    Article  Google Scholar 

  9. J. Chen, J.H. Warner, 2D semiconductor materials and devices (Elsevier, Amsterdam, 2020), pp.167–197

    Book  Google Scholar 

  10. B. Mondal, P.K. Gogoi, ACS Appl. Electron. Mater. 4(1), 59–86 (2022)

    Article  CAS  Google Scholar 

  11. J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, Science 331(6017), 568–571 (2011)

    Article  CAS  Google Scholar 

  12. Y. Zhao, X. Luo, H. Li, J. Zhang, P.T. Araujo, C.K. Gan, J. Wu, H. Zhang, S.Y. Quek, M.S. Dresselhaus, Q. Xiong, Nano Lett. 13(3), 1007–1015 (2013)

    Article  CAS  Google Scholar 

  13. H. Li, J. Wu, Z. Yin, H. Zhang, Acc. Chem. Res. 47(4), 1067–1075 (2014)

    Article  CAS  Google Scholar 

  14. J. Shi, D. Ma, G.F. Han, Y. Zhang, Q. Ji, T. Gao, J. Sun, X. Song, C. Li, Y. Zhang, X.Y. Lang, ACS Nano 8(10), 10196–10204 (2014)

    Article  CAS  Google Scholar 

  15. Y.H. Lee, X.Q. Zhang, W. Zhang, M.T. Chang, C.T. Lin, K.D. Chang, Y.C. Yu, J.T. Wang, C.S. Chang, L.J. Li, T.W. Lin, Adv. Mater. 24(17), 2320–2325 (2012)

    Article  CAS  Google Scholar 

  16. V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman, Science 340(6139), 1226419 (2013)

    Article  Google Scholar 

  17. A. Griffin, K. Nisi, J. Pepper, A. Harvey, B.M. Szydłowska, J.N. Coleman, C. Backes, Chem. Mater. 32(7), 2852–2862 (2020)

    Article  CAS  Google Scholar 

  18. S. Rengifo, A comparison between graphene and WS2 as solid lubricant additives to aluminum for automobile applications. (FIU Electronic Theses and Dissertations, 2015), https://digitalcommons.fiu.edu/etd/1862

  19. C. Cong, J. Shang, X. Wu, B. Cao, N. Peimyoo, C. Qiu, L. Sun, T. Yu, Advanced. Opt. Mater. 2(2), 131–136 (2014)

    Article  Google Scholar 

  20. S. Behura, K.C. Chang, Y. Wen, R. Debbarma, P. Nguyen, S. Che, S. Deng, M.R. Seacrist, V. Berry, IEEE Nanatechnol. Mag. 11(2), 33–38 (2017)

    Article  Google Scholar 

  21. T.W. Chen, U. Rajaji, S.M. Chen, R.J. Ramalingam, Ultrason. Sonochem. 54, 79–89 (2019)

    Article  CAS  Google Scholar 

  22. S. Cao, T. Liu, S. Hussain, W. Zeng, X. Peng, F. Pan, Mater. Lett. 129, 205–208 (2014)

    Article  CAS  Google Scholar 

  23. C. Backes, T.M. Higgins, A. Kelly, C. Boland, A. Harvey, D. Hanlon, J.N. Coleman, Chem. Mater. 29(1), 243–255 (2017)

    Article  CAS  Google Scholar 

  24. A. Jawaid, D. Nepal, K. Park, M. Jespersen, A. Qualley, P. Mirau, L.F. Drummy, R.A. Vaia, Chem. Mater. 28(1), 337–348 (2016)

    Article  CAS  Google Scholar 

  25. A. O’Neill, U. Khan, J.N. Coleman, Chem. Mater. 24(12), 2414–2421 (2012)

    Article  Google Scholar 

  26. S. Luo, S. Dong, C. Lu, C. Yu, Y. Ou, L. Luo, J. Sun, J. Colloid Interface Sci. 513, 389–399 (2018)

    Article  CAS  Google Scholar 

  27. K. Manna, H.N. Huang, W.T. Li, Y.H. Ho, W.H. Chiang, Chem. Mater. 28(21), 7586–7593 (2016)

    Article  CAS  Google Scholar 

  28. G. Cunningham, M. Lotya, C.S. Cucinotta, S. Sanvito, S.D. Bergin, R. Menzel, M.S. Shaffer, J.N. Coleman, ACS Nano 6(4), 3468–3480 (2012)

    Article  CAS  Google Scholar 

  29. G.Q. Han, Y.R. Liu, W.H. Hu, B. Dong, X. Li, Y.M. Chai, Y.Q. Liu, C.G. Liu, Mater. Chem. Phys. 167, 271–277 (2015)

    Article  CAS  Google Scholar 

  30. L. Niu, J.N. Coleman, H. Zhang, H. Shin, M. Chhowalla, Z. Zheng, Small 12(3), 272–293 (2016)

    Article  CAS  Google Scholar 

  31. U. Halim, C.R. Zheng, Y. Chen, Z. Lin, S. Jiang, R. Cheng, Y. Huang, X. Duan, Nat. Commun. 4(1), 1–7 (2013)

    Article  Google Scholar 

  32. A.S. Moghaddam, E.S. Iranizad, Mater. Res. Express. 5(1), 015045 (2018)

    Article  Google Scholar 

  33. Y.Q. Qin, Y.Q. Peng, W.F. Yang, Y. Wang, J.W. Cui, Y. Zhang, IOP Conf. Ser.: Mater. Sci. Eng. 770(1), 012079 (2020)

    Article  CAS  Google Scholar 

  34. T. Abhijith, E. Shiju, R. Suthar, P. Sharma, S. Thomas, S. Karak, Nanotechnology 33, 435702 (2022)

    Article  Google Scholar 

  35. Z. Guan, C. Wang, W. Li, S. Luo, Y. Yao, S. Yu, R. Sun, C.P. Wong, Nanotechnology 29(42), 425702 (2018)

    Article  Google Scholar 

  36. H.M. Tham, S. Japip, T.S. Chung, J. Membr. Sci. 588, 117219 (2019)

    Article  CAS  Google Scholar 

  37. F. Huang, J. Jian, R. Wu, J. Mater. Sci. 51(22), 10160–10165 (2016)

    Article  CAS  Google Scholar 

  38. M. Lotya, A. Rakovich, J.F. Donegan, J.N. Coleman, Nanotechnology 24(26), 265703 (2013)

    Article  Google Scholar 

  39. M.P. Meivita, S.S. Chan, S.X. Go, D. Lee, N. Bajalovic, D.K. Loke, ACS Omega 7(27), 23075–23082 (2022)

    Article  CAS  Google Scholar 

  40. B. Adilbekova, Y. Lin, E. Yengel, H. Faber, G. Harrison, Y. Firdaus, A. El-Labban, D.H. Anjum, V. Tung, T.D. Anthopoulos, J. Mater. Chem. C 8(15), 5259–5264 (2020)

    Article  CAS  Google Scholar 

  41. L. Ma, Z. Liu, Z.L. Cheng, Ceram. Int. 46(3), 3786–3792 (2020)

    Article  CAS  Google Scholar 

  42. P.M. Merino, S.D. Midgley, E.I. Martin, P. Estelle, R. Alcantara, A.S. Coronilla, R.G. Crespo, J. Navas, ACS Appl. Mater. Interfaces 12(5), 5793–5804 (2020)

    Article  Google Scholar 

  43. C. Backes, B.M. Szydłowska, A. Harvey, S. Yuan, V. Vega-Mayoral, B.R. Davies, P.L. Zhao, D. Hanlon, E.J. Santos, M.I. Katsnelson, W.J. Blau, ACS Nano 10(1), 1589–1601 (2016)

    Article  CAS  Google Scholar 

  44. Q.V. Le, T.P. Nguyen, S.Y. Kim, Phys. Status Solidi (RRL)–Rapid Res. Lett. 8(5), 390–394 (2014)

    Article  CAS  Google Scholar 

  45. A.A. Jeffery, C. Nethravathi, R. Michael, J. Phys. Chem. C. 118(2), 1386–1396 (2014)

    Article  Google Scholar 

  46. Z. Qin, D. Zeng, J. Zhang, C. Wu, Y. Wen, B. Shan, C. Xie, Appl. Surf. Sci. 414, 244–250 (2017)

    Article  CAS  Google Scholar 

  47. M. Zhou, Z. Zhang, K. Huang, Z. Shi, R. Xie, W. Yang, Nanoscale 8(33), 15262–15272 (2016)

    Article  CAS  Google Scholar 

  48. S. Sharma, J. Singh, S. Bhagat, M. Singh, S. Sharma, Mater. Res. Express. 5(4), 045047 (2018)

    Article  Google Scholar 

  49. S. Qiao, H. Yang, Z. Bai, G. Peng, X. Zhang, In 2017 5th International Conference on Mechatronics, Materials, Chemistry and Computer Engineering (ICMMCCE 2017). Atlantis Press, 1408–1413 (2017)

  50. J. Park, M.S. Kim, E. Cha, J. Kim, W. Choi, Sci. Rep. 7(1), 1–8 (2017)

    Article  Google Scholar 

  51. Y. Zhang, Y. Zhang, Q. Ji, J. Ju, H. Yuan, J. Shi, T. Gao, D. Ma, M. Liu, Y. Chen, X. Song, ACS Nano 7(10), 8963–8971 (2013)

    Article  CAS  Google Scholar 

  52. Y. Li, X. Li, T. Yu, G. Yang, H. Chen, C. Zhang, Q. Feng, J. Ma, W. Liu, H. Xu, Y. Liu, Nanotechnology 29(12), 124001 (2018)

    Article  Google Scholar 

  53. Y. Zhang, Z. Zhang, Y. Cheng, F. Cheng, L. Wang, N. Liu, L. Li, J. Su, Y. Gao, Nano Energy 67, 104221 (2020)

    Article  CAS  Google Scholar 

  54. L.R. Bogdanova, O.I. Gnezdilov, B.Z. Idiyatullin, R.K. Kurbanov, Y.F. Zuev, O.G. Us’Yarov, Colloid J. 74(1), 1–6 (2012)

    Article  CAS  Google Scholar 

  55. M. Lotya, Y. Hernandez, P.J. King, R.J. Smith, V. Nicolosi, L.S. Karlsson, F.M. Blighe, S. De, Z. Wang, I.T. McGovern, G.S. Duesberg, J. Am. Chem. Soc. 131(10), 3611–3620 (2009)

    Article  CAS  Google Scholar 

  56. S.V. López, P. Martínez, M.P. San Andrés, A.M. Díez-Pascual, M. Valiente, J. Colloid Interface Sci. 514, 415–424 (2018)

    Article  Google Scholar 

  57. A. Gupta, V. Arunachalam, S. Vasudevan, J. Phys. Chem. Lett. 6(4), 739–744 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the support by DST-FIST project (SR/FST/ET-II/2018/241) of the Department of Science & Technology (DST) at Department of Electronics and Communication Engineering for I–V measurement by Probe station, Sophisticated Analytical Instrumentation Centre (SAIC) for spectroscopic measurement and Chemical Science Department for UV–Vis Spectroscopic measurement of Tezpur University. We are also thankful for the support given by Institute of Advanced Study in Science and Technology (IASST) Guwahati for AFM analysis.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

AR contributed substantially to the WS2 nanosheet preparation, characterization analysis, and manuscript drafting. PK contributed to analysis of the results and manuscript writing. Initial planning, execution of the proposed work and preparing of the final version of the submitting manuscript is done by BM.

Corresponding author

Correspondence to Biplob Mondal.

Ethics declarations

Competing interests

Author declares that they have no known competing interests.

Research involving human and animals rights

The work presented in this manuscript includes no research involving human and/or animal subjects. All authors comply with ethical standard of the journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, A., Kalita, P. & Mondal, B. Structural, spectroscopic and electrical properties of liquid phase exfoliated few layered two-dimensional tungsten disulfide (WS2) using anionic surfactant. J Mater Sci: Mater Electron 34, 224 (2023). https://doi.org/10.1007/s10854-022-09687-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09687-4

Navigation