Skip to main content
Log in

The synthesis and some optical absorption investigation of the dual combined glass/FTO/a-Si/Au NPs/Au NPs@TiO2 plasmonic structure

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper reports the synthesis method by sputtered technique for Silicon and Au different thicknesses layers onto glass/FTO substrate, after that the thermal annealing, and then using sol–gel method producing AuNPs@TiO2 plasmonic structure to produce four sample groups: Glass/FTO/AuNPs; glass/FTO/AuNPs/AuNPs@TiO2, glass/FTO/a-Si/AuNPs, and dual combined glass/FTO/a-Si/Au NPs/AuNPs@TiO2 configurations. After thermal annealing, the sputtered Si layer on glass/FTO has amorphous phase (a-Si), sputtered Au layer has crystallized phase in (111) direction and TiO2 has anatase phase. Some optical measurements have investigated such as the transmission, reflection and the absorption measurements were carried out for different sample groups in comparison for choosing the sample group having the highest optical absorption spectrum aiming for application in the modified plasmonic solar cell. The optical absorption of the dual combined glass/FTO/a-Si/AuNPs/AuNPs@TiO2 configuration were significantly enhanced in ultraviolet, visible and near infrared regions with plasmonic resonance peaks shifted depending on Au NPs sizes and a-Si layer thicknesses. This result can be explained by the effects of the dual combined plasmonic structure where the partial /a-Si/Au NPs plasmonic structure has plasmonic resonance around 610 nm with enhanced tail cover to 800 nm, and the partial AuNPs@TiO2 plasmonic structure has plasmonic resonance around 510 nm. The dual combined glass/FTO/a–Si/Au NPs/Au NPs@TiO2 configuration with enhanced absorption spectrum in a wide range that is proposed for applying in the modified plasmonic solar cell for performance enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information, graphical abstract files.

References

  1. T. Zhang, M. Wang, H. Yang, Energies 11, 1 (2018)

    Google Scholar 

  2. M. Gloeckler, I. Sankin, Z. Zhao, IEEE J. Photovoltaics 3, 1389 (2013)

    Article  Google Scholar 

  3. J. Ramanujam, U.P. Singh, Energy Environ. Sci. 10, 1306 (2017)

    Article  CAS  Google Scholar 

  4. W. Rouis, A. Sayari, M. Nouiri, M. Ezzdini, S. Rekaya, L. El Mir, L. Sfaxi, H. Maaref, S.A. Shah, A.F.A. Khan, A.F.A. Khan, N.A. Rahim, M. Mehmood, Int. J. Nanotechnol. 296, 584 (2014)

    Google Scholar 

  5. M. Jørgensen, K. Norrman, S.A. Gevorgyan, T. Tromholt, B. Andreasen, F.C. Krebs, Adv. Mater. 24, 580 (2012)

    Article  Google Scholar 

  6. B. O’Regan, M. Gratzel, Nat. Publ. Gr. 354, 737 (1991)

    Google Scholar 

  7. G. Azzouzi, W. Tazibt, Energy Procedia 41, 40 (2013)

    Article  CAS  Google Scholar 

  8. S. Bhattacharya, S. John, Sci. Rep. 9, 1 (2019)

    Article  Google Scholar 

  9. E.A. Wahabaalla, E.M. El-Menyawy, T. Abdallah, G.M. Youssef, Appl. Phys. A Mater. Sci. Process. 125, 1 (2019)

    Article  Google Scholar 

  10. V. Sugathan, E. John, K. Sudhakar, Renew. Sustain. Energy Rev. 52, 54 (2015)

    Article  CAS  Google Scholar 

  11. M.C. Hanna, A.J. Nozik, J. Appl. Phys. 100, 1 (2006)

    Article  Google Scholar 

  12. N. Adamovic, U. Schmid, Elektrotechnik Und Informationstechnik 128, 342 (2011)

    Article  Google Scholar 

  13. Y.H. Jang, Y.J. Jang, S. Kim, L.N. Quan, K. Chung, D.H. Kim, Chem. Rev. 116, 14982 (2016)

    Article  CAS  Google Scholar 

  14. V.E. Ferry, J.N. Munday, H.A. Atwater, Adv. Mater. 22, 4794 (2010)

    Article  CAS  Google Scholar 

  15. X.C. Ma, Y. Dai, L. Yu, B.B. Huang, Light Sci. Appl. 5, 1 (2016)

    Article  Google Scholar 

  16. P. Mandal, S. Sharma, Renew. Sustain. Energy Rev. 65, 537 (2016)

    Article  CAS  Google Scholar 

  17. X. Li, W.C.H. Choy, L. Huo, F. Xie, W.E.I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, Y. Yang, Adv. Mater. 24, 3046 (2012)

    Article  CAS  Google Scholar 

  18. X. Li, W.C.H. Choy, H. Lu, W.E.I. Sha, A.H.P. Ho, Adv. Funct. Mater. 23, 2728 (2013)

    Article  CAS  Google Scholar 

  19. F.X. Xie, W.C.H. Choy, C.C.D. Wang, W.E.I. Sha, D.D.S. Fung, Appl. Phys. Lett. 99, 2011 (2011)

    Google Scholar 

  20. A. Luque, A. Martí, Phys. Rev. Lett. 78, 5014 (1997)

    Article  CAS  Google Scholar 

  21. J. E. Jacak, W. A. Jacak, Plasmonics (2018)

  22. M. Jim, M. Monge (2022)

  23. M. Ye, X. Wen, M. Wang, J. Iocozzia, N. Zhang, C. Lin, Z. Lin, Mater. Today 18, 155 (2015)

    Article  CAS  Google Scholar 

  24. A. Gapska, M. Łapiński, P. Syty, W. Sadowski, J.E. Sienkiewicz, B. Kościelska, Beilstein J. Nanotechnol. 9, 2599 (2018)

    Article  CAS  Google Scholar 

  25. C.L. Tan, S.J. Jang, Y.M. Song, K. Alameh, Y.T. Lee, Nanoscale Res. Lett. 9, 1 (2014)

    Article  Google Scholar 

  26. M. Losurdo, M.M. Giangregorio, G.V. Bianco, A. Sacchetti, P. Capezzuto, G. Bruno, Sol. Energy Mater. Sol. Cells 93, 1749 (2009)

    Article  CAS  Google Scholar 

  27. A. Al-Kattan, G. Tselikov, K. Metwally, A.A. Popov, S. Mensah, A.V. Kabashin, Nanomaterials 11, 1 (2021)

    Google Scholar 

  28. N. Tien Thanh, D. Tien Thanh, N. Si Hieu, N. Thi Mai Huong, VNU Sci. Math.-Phys. 37, 12 (2021)

    Google Scholar 

  29. T.S.T. Amran, T. Amran, M.R. Hashim, H. Yazid, R. Adnan, Nanoscale Res. Lett. 8, 1 (2013)

    Article  Google Scholar 

  30. T.T. Nguyen, H.T. Pham, K.A. Dao, J. Mater. Sci. Mater. Electron. 28, 2075 (2017)

    Article  CAS  Google Scholar 

  31. P. Klapetek, D. Nečas, C. Anderson, User Guid. 1, 1 (2009)

    Google Scholar 

  32. J. Wang, Q. Ran, X. Xu, B. Zhu, W. Zhang, I.O.P. Conf, Ser. Earth Environ. Sci. 310, 1 (2019)

    Google Scholar 

  33. L. A. Baraban, V. Z. Lozovski, Opt. Spectrosc. (English Transl. Opt. i Spektrosk. 97, 810 (2004)

  34. K. Zhou, J. Song, L. Lu, Z. Luo, Q. Cheng, Opt. Express 27, 2305 (2019)

    Article  CAS  Google Scholar 

  35. G. Conibeer, M. Green, R. Corkish, Y. Cho, E.C. Cho, C.W. Jiang, T. Fangsuwannarak, E. Pink, Y. Huang, T. Puzzer, T. Trupke, B. Richards, A. Shalav, K. Lung Lin, Thin Solid Films 511, 654 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This research is done in the Institute of Theoretical and Applied Research (ITAR), Duy Tan University Hanoi and in Institute of Materials Science (IMS), VAST Hanoi. The authors express their thanks for supporting facilities to carry out this work. Authors thank to Assoc. Prof, Le Van Vu and PhD. Nguyen Duy Thien who have taken part in calculation of Au Sizes and in the discussion measurement of reflectance spectra for samples.

Funding

The authors declare they have no financial interests.

Author information

Authors and Affiliations

Authors

Contributions

KADAO is project leader, conceptualization, analyzing data, writing paper, drawing pictures, final revision. TTN: doing experiments, measurements, and analysis of the experimental data. NXC: analyzing data, manuscript reading, revising.

Corresponding author

Correspondence to Khac An Dao.

Ethics declarations

Conflict of interest

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript. The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6308 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dao, K.A., Nguyen, T.T. & Chung, N.X. The synthesis and some optical absorption investigation of the dual combined glass/FTO/a-Si/Au NPs/Au NPs@TiO2 plasmonic structure. J Mater Sci: Mater Electron 34, 282 (2023). https://doi.org/10.1007/s10854-022-09676-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09676-7

Navigation