Skip to main content

Advertisement

Log in

Ni doping improving magnesium borate microwave dielectric ceramic for LTCC via cold sintering and post-annealing process

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A cold sintering process (150 °C, 90 min, and 800 MPa) is employed to pre-densify (Mg1 − xNix)3B2O6 (0.00 ≤  x < 0.10, MNBO) ceramics to 80% relative density, followed by a post-annealing treatment between 800 and 950 °C. The origin of optimizations of the sintering, microstructure, and dielectric properties of Ni2+-substituted Mg3B2O6 ceramic are investigated in detail. All the samples are the single phase of magnesium borate, as confirmed by XRD and Raman spectra. The crystallographic lattice parameters of all compositions are obtained by full-pattern Rietveld refinement. It is found that the εr of MNBO ceramics is related to the relative density and the ionic polarization of chemical bonds. The change of atomic filling fraction and half peak width is found to be an important effect on the × f value. The optimum microwave dielectric properties (εr = 6.92, × f  =  24,336 GHz, τf = − 53.43 ppm/°C) and the relative density of MNBO ceramics (92.4%) are obtained for composition with 4% Ni2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. M.T. Sebastian, R. Ubic, Jantunen. Low-loss dielectric ceramic materials and their properties. Int. Mater. 60, 392–412 (2015)

    Article  Google Scholar 

  2. T.A. Vanderah, Talking ceramics. Science 298, 1182–1184 (2002)

    Article  CAS  Google Scholar 

  3. W. Lou, K. Song, F. Hussain, B. Liu, H.B. Bafrooei, H. Linc et al., Bond characteristics and microwave dielectric properties of (Li0.5Ga0.5)2+ doped Mg2Al4Si5O18 ceramics. Ceram. Int. 46(18), 28631–28638 (2020)

    Article  CAS  Google Scholar 

  4. M.T. Sebastian, H. Jantunen, Low loss dielectric materials for LTCC applications: a review. Int. Mater. 53, 57–90 (2008)

    Article  CAS  Google Scholar 

  5. B. Liu, L. Yi, L. Li, X.M. Chen, Densification and microwave dielectric properties of Ca1.15Sm0.85Al0.85Ti0.15O4 ceramics with B2O3 addition. J. Alloy Compd. 653, 351–357 (2015)

    Article  CAS  Google Scholar 

  6. B. Liu, L. Yi, Chen. Effects of B2O3 addition on sintering behavior and microwave dielectric properties of (Sr0.6Ca0.4)LaAlO4 ceramics. Mater. Res. 67, 230–233 (2015)

    CAS  Google Scholar 

  7. Y. Atsushi, H. Ogawa, A. Kan, H. Ohsato, Y. Higashida, Microwave dielectric properties of Mg4Nb2O9–3.0wt.% LiF ceramics prepared with CaTiO3 additions. J. Eur. Ceram. 25, 2871–2875 (2005)

    Article  Google Scholar 

  8. U. Dosler, M.M. Krzmanc, B. Jancar, D. Suvorov, A High-Q microwave Dielectric Material based on Mg3B2O6. J. Am. Ceram. Soc. 93(11), 3788–3792 (2010)

    Article  CAS  Google Scholar 

  9. R. Peng, Y.C. Lu, Y.X. Li et al., Mechanism study of the Mn-substituted magnesium borate: decreased sintering temperature and improved dielectric property. J. Am. Ceram. Soc. 104(9), 4614–4623 (2021)

    Article  CAS  Google Scholar 

  10. Y.J. Gua, X.B. Ding, W. Hua, J.L. Huang et al., Effect of Mg/B ratio and Sr2+ substitution for Mg2+ on the sintering, phase composition and microwave dielectric properties of Mg3B2O6 ceramics. Ceram. Int. 46(6), 25888–25894 (2020)

    Article  Google Scholar 

  11. B. Liu, M.F. Zhou, K. Sa, K.X. Song et al., Enhancement of densification and microwave dielectric properties in LiF ceramics via a cold sintering and post-annealing process. J. Euro. Ceram. Soc. 41(2), 1726–1729 (2021)

    Article  CAS  Google Scholar 

  12. H. Zhang, X.Y. Wang, Q. Cheng et al., Preparation of Li2MoO4 using aqueous solution method. J. Mater. Chem. C 27, 5422–5426 (2016)

    CAS  Google Scholar 

  13. H.Q. Huang, J. Tang, Liu. Preparation of Na0.5Bi0.5TiO3 ceramics by hydrothermal-assisted cold sintering. Ceram. Int. 45, 6753–6758 (2019)

    Article  CAS  Google Scholar 

  14. S.S. Berbano, J. Guo, H.Z. Guo et al., Cold sintering process of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte. J. Am. Ceram. Soc. 100(5), 2123–2135 (2016)

    Article  Google Scholar 

  15. W.B. Hong, L. Li, M. Cao, X.M. Chen, Plastic deformation and effects of water in room-temperature cold sintering of NaCl microwave dielectric ceramics. J. Am. Ceram. Soc. 101, 4038–4043 (2018)

    Article  CAS  Google Scholar 

  16. W.B. Hong, L. Li, H. Yan, S.Y. Wu, H.S. Yang, X. M. Chen. Room-temperature-densified H3BO3 microwave dielectric ceramics with ultra-low permittivity and ultra-high qf value. J. Mater. Chem. C 6, 233–239 (2020)

    Google Scholar 

  17. Y. Ji, K. Song, X. Luo, B. Liu, H.B. Bafrooei, D. Wang, Microwave dielectric properties of (1-x)Li2MoO4-xMg2SiO4 composite ceramics fabricated by cold sintering process. Front. Mater. 6, 256 (2019)

    Article  Google Scholar 

  18. Y. Zeng, H. Yang, W. Fu, L. Qiao, L. Chang, J. Chen et al., Synthesis of magnesium borate (Mg2B2O5) nanowires, growth mechanism, and their lubricating properties. Mater. Res. Bull. 43, 2239–2247 (2008)

    Article  CAS  Google Scholar 

  19. J. Li, C.C. Li, Z.H. Wei et al., Microwave dielectric properties of a low-firing Ba2BiV3O11 ceramic. J. Am. Ceram. Soc. 98(3), 683–686 (2015)

    Article  CAS  Google Scholar 

  20. R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Am. Ceram. Soc. 73(1), 348–366 (1993)

    CAS  Google Scholar 

  21. R.D. Shannon, G.R. Rossman, Dielectric constants of silicate garnets and the oxide additivity rule. Am. Mineral. 77(1), 94–100 (1992)

    CAS  Google Scholar 

  22. I. Hameed, S.Y. Wu, L. Li et al., Structure and microwave dielectric characteristics of Sr2[Ti1–x(Al0.5Nb0.5)x]O4 (x ≤ 0.50) ceramics. J. Am. Ceram. Soc. 102(10), 6137–6146 (2019)

    Article  CAS  Google Scholar 

  23. W.Q. Liu, R.Z. Zuo, A novel low-temperature firable La2Zr3(MoO4)9 microwave dielectric ceramic. J. Euro. Ceram. Soc. 38(1), 339–342 (2018)

    Article  Google Scholar 

  24. X.L. Shi, H.W. Zhang, D.N. Zhang et al., Correlation between structure characteristics and dielectric properties of Li2Mg3 – xCuxTiO6 ceramics based on complex chemical bond theory. Ceram. Int. 45(17), 23509–23514 (2019)

    Article  Google Scholar 

  25. D. Wang, L. Li, J. Jiang et al., Cold sintering of microwave dielectric ceramics and devices. Mater. Res. 36(2), 333–349 (2021)

    Article  CAS  Google Scholar 

  26. D. Wang, J. Chen, G. Wang et al., Cold sintered LiMgPO4 based composites for low temperature co-fired ceramic (LTCC) applications. J. Am. Ceram. Soc. 103, 6237–6244 (2020)

    Article  CAS  Google Scholar 

  27. D. Wang, B. Siame, S. Zhang et al., Direct integration of cold sintered, temperature-stable Bi2Mo2O9-K2MoO4 ceramics on printed circuit boards for satellite navigation antennas. J. Euro. Ceram. Soc. 40(12), 4029–4034 (2020)

    Article  CAS  Google Scholar 

  28. D. Wang, S. Zhang, G. Wang et al., Cold sintered CaTiO3-K2MoO4 microwave dielectric ceramics for integrated microstrip patch antennas. Appl. Mater. Today. 18, 100519 (2020)

    Article  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of China (Grant Nos. 52161145401, and 51672063).

Author information

Authors and Affiliations

Authors

Contributions

MC, YL: experiment preparation, data analysis, article writing, TZ, MM, BL: fund acquisition, project supervision, GW, KS: Guide and revise articles, supervise the whole process.

Corresponding authors

Correspondence to Tao Zhou or Kaixin Song.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 64.6 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, M., Liu, Y., Zhou, T. et al. Ni doping improving magnesium borate microwave dielectric ceramic for LTCC via cold sintering and post-annealing process. J Mater Sci: Mater Electron 34, 235 (2023). https://doi.org/10.1007/s10854-022-09652-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09652-1

Navigation