Skip to main content
Log in

Effect of lead doping on the structural, optical, and radiation shielding parameters of chemically synthesized ZnS nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

ZnS nanoparticles (NPs) were used as host materials for Pb doping at different concentrations (0, 2.5, 6.5, and 10.5). Co-precipitation method was used to prepare un-doped and Pb-doped at room temperature. Crystalline of ZnS and Pb-doped ZnS NPs with cubic structure were obtained, as confirmed by powder X-ray diffraction (XRD). Observation of transmission electron microscopy (TEM) showed that un-doped and Pb-doped at 6.5% ZnS NPs have a spherical form with an average diameter of 4.6 nm and 3 nm, respectively. Fourier Transformed Infrared Spectrometer (FTIR) was measured from 400 to 4000 cm−1, and FTIR data showed that the intensity of absorption peaks decreased with the increase of Pb concentration. The results of the UV- visible absorption spectroscopy indicated that the Pb-doped ZnS NPs exhibit a strong quantum confinement effect as the optical band gap energy (EG) increased significantly compared to the un-doped and bulk ZnS. Furthermore, a wide range of nuclear shielding parameters were studied for prepared nanoparticle samples using the Phy-X/PSD software program. The results showed that the ZnS NPs with Pb-doped, which have the lowest nanodiameter, have a greater ability to protect against nuclear radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Data will be provided upon request.

References

  1. T. Song, J.Y. Cheong, H. Cho, I.D. Kim, D.Y. Jeon, RSC Adv. 9, 15177–15183 (2019). https://doi.org/10.1039/c9ra01462d

    Article  CAS  Google Scholar 

  2. Z. Zhang, Y. Lin, F. Liu, J. Dispers. Sci. Technol. 41, 1611441 (2019). https://doi.org/10.1080/01932691.2019.1611441

    Article  CAS  Google Scholar 

  3. A. Tiwari, S.J. Dhoble, RSC Adv. 6, 4400 (2016). https://doi.org/10.1039/C6RA13108E

    Article  CAS  Google Scholar 

  4. A. Alnehia, A.H. Al-Hammadi, A. Al-Sharabi, H. Isham Alnahari, Inorg. Chem. Commun. 143, 109699 (2022). https://doi.org/10.1016/j.inoche.2022.109699

    Article  CAS  Google Scholar 

  5. S.R. Yousefia, A. Sobhanib, M. Salavati-Niasari, Adv. Powder Technol. 28, 1258–1262 (2017). https://doi.org/10.1016/j.apt.2017.02.013

    Article  CAS  Google Scholar 

  6. S.R. Yousefi, M. Ghanbari, O. Amiri, Z. Marzhoseyni, P. Mehdizadeh, M.H. Oghaz, M.S. Niasari, J. Am. Ceram. Soc. 104, 2952–2965 (2021). https://doi.org/10.1111/jace.17696

    Article  CAS  Google Scholar 

  7. C. Wang, B. Hu, L. Chen, N. Liu, J. Li, Optik. 244, 165673 (2020). https://doi.org/10.1016/j.ijleo.2020.165673

    Article  CAS  Google Scholar 

  8. S.R. Yousefi, D. Ghanbari, M.S. Niasari, M. Hassanpour, J. Mater Sci: Mater Electron 27, 1244–1253 (2016)

    CAS  Google Scholar 

  9. S.R. Yousefi, O. Amiri, M.S. Niasari, Ultrason. Sonochem. 58, 104619 (2019). https://doi.org/10.1016/j.ultsonch.2019.104619

    Article  CAS  Google Scholar 

  10. M.A. Mahdi, S.R. Yousefi, L.S. Jasim, M.S. Niasari, Int. J. Hydrog. Energy 47, 14319–14330 (2022). https://doi.org/10.1016/j.ijhydene.2022.02.175

    Article  CAS  Google Scholar 

  11. P. Kaur, H.W. Kuo, W.H. Huang, C.L. Chen, A.K. Singh, S. Kumar, Appl. Phys A. 126, 884 (2020). https://doi.org/10.1007/s00339-020-04072-6

    Article  CAS  Google Scholar 

  12. M. Jothibas, C. Manoharan, S.J. Jeyakumar, P. Praveenc, I.K. Punithavathy, J.P. Richard, Sol. Energy. 159, 434 (2018). https://doi.org/10.1016/j.solener.2017.10.055

    Article  CAS  Google Scholar 

  13. F.A. La Porta, M.M. Ferrer, Y.V.B. de Santana, C.W. Raubach, V.M. Longo, J.R. Sambrano, E. Longo, J. Andrés, M.S. Lie, A.J. Varela, J. Alloys Compd. 556, 153 (2013). https://doi.org/10.1016/j.jallcom.2012.12.081

    Article  CAS  Google Scholar 

  14. D. Agrawal, S.L. Patel, Himanshu, S. Chander, M.S. Dhak, Opt. Mater 105, 109899 (2020). https://doi.org/10.1016/j.optmat.2020.109899

    Article  CAS  Google Scholar 

  15. D. Agrawal, D. Suthar, R. Agarwal, Himanshu, S.L. Patel, M.S. Dhaka, Phys. Lett. A 384, 126557 (2020). https://doi.org/10.1016/j.physleta.2020.126557

    Article  CAS  Google Scholar 

  16. D. Agrawal, S.L. Patel, Himanshu, S. Chander, M.D. Kannan, M.S. Dhaka, Optik 199, 163307 (2019). https://doi.org/10.1016/j.ijleo.2019.163307

    Article  CAS  Google Scholar 

  17. J.F. Xu, W. Ji, J.Y. Lin, S.H. Tang, Y.W. Du, Appl. Phys. A. 66, 639–641 (1998). https://doi.org/10.1007/s003390050725

    Article  CAS  Google Scholar 

  18. R. Shahid, M. Gorlov, R. El-Sayed, M.S. Toprak, A. Sugunan, L. Kloo, M. Muhammed, Mater. Lett. 89, 316–319 (2012). https://doi.org/10.1016/j.matlet.2012.08.143

    Article  CAS  Google Scholar 

  19. S.R. Yousefi, A. Sobhani, H.A. Alshamsi, M.S. Niasari, RSC Adv. 11, 11500–11512 (2021)

    Article  CAS  Google Scholar 

  20. S.R. Yousefi, M.M. Arani, M.S. Morassaei, M.S. Niasari, H. Moayedi, Int. J. Hydrog. Energy 44, 24005–24016 (2019). https://doi.org/10.1016/j.ijhydene.2019.07.113

    Article  CAS  Google Scholar 

  21. U. Jabeen, T. Adhikari, S.M. Shah, D. Pathak, V. Thakur, J.M. Nunzi, M. Amir, A. Mushtaq, Chin. J. Phys. 58, 348 (2019). https://doi.org/10.1016/j.cjph.2019.01.012

    Article  CAS  Google Scholar 

  22. A. Bol, A. Meijerink, Mater. Res Soci. 67 B (2001)

  23. M.A. Algradee, A.B. Alwany, O.M. Samir, E.E. Saleh, T.M. El Sherbini, J. Non-Cryst, Sol. 589, 121664 (2022). https://doi.org/10.1016/j.jnoncrysol.2022.121664

    Article  CAS  Google Scholar 

  24. B. Alwany, G.M. Youssef, E.E. Salehb, O.M. Samira, M.A. Algradee, A. Alnehia, Optik. 260, 169124 (2022). https://doi.org/10.1016/j.ijleo.2022.169124

    Article  CAS  Google Scholar 

  25. E. Saleh, M.A. Al-garadee, M.S. Al-fakeh, Radi. Phys. Chem. 189, 109743 (2021). https://doi.org/10.1016/j.radphyschem.2021.109743

    Article  CAS  Google Scholar 

  26. O. Tekin, V.P. Singh, T. Manici, Appl. Radiat. Isot. 121, 122 (2017). https://doi.org/10.1016/j.apradiso.2016.12.040

    Article  CAS  Google Scholar 

  27. E. Şakar, Ö.F. Özpolat, B. Alım, M.I. Sayyed, M. Kurudirek, J. Radia. Phys. Chem. 166, 108496 (2020). https://doi.org/10.1016/j.radphyschem.2019.108496

    Article  CAS  Google Scholar 

  28. J. Kazmi, P.C. Ooi, B.T. Goh, M.K. Lee, M.F. Mohd. Razip Wee, S.S.A. Karim, S.R.A. Raza, M.A. Mohamed, RSC Adv. 10, 23297–23311 (2020). https://doi.org/10.1039/d0ra03816d

    Article  CAS  Google Scholar 

  29. J. Zhang, S. Liu, J. Yu, M. Jaroniec, J. Mater. Chem. 21, 14655–14662 (2011). https://doi.org/10.1039/C1JM12596F

    Article  CAS  Google Scholar 

  30. A. Out, M. Kuncan, Ö. Şahin, S. Horoz, J. Aust. Ceram. Soc. 56, 639–643 (2020). https://doi.org/10.1007/s41779-019-00380-0

    Article  CAS  Google Scholar 

  31. A. Dhupar, S. Kumar, H.S. Tuli, A.K. Sharma, V. Sharma, J.K. Sharma, Appl. Phys. A. 127, 263 (2021). https://doi.org/10.1007/s00339-021-04425-9

    Article  CAS  Google Scholar 

  32. E.D. Gaspera, J. Griggs, T. Ahmed, S. Walia, E.L.H. Mayes, A. Calzolari, A. Catellani, J.V. Embden, Nanoscale 11, 3154–3163 (2019). https://doi.org/10.1039/C8NR08830F

    Article  Google Scholar 

  33. V. Mote, Y. Purushotham, B. Dole, J. Theor. Appl. Phys. 6, 1–8 (2012)

    Article  Google Scholar 

  34. M. El-Kemary, H. El-Shamy, J. Photochem. Photobiol. A: Chem. 205, 151–155 (2009). https://doi.org/10.1016/j.jphotochem.2009.04.021

    Article  CAS  Google Scholar 

  35. S.S. Talwatkar, A.L. Sunatkari, Y.S. Tamgadge, V.G. Pahurkar, G.G. Muley, Appl. Phys. A. 118, 675–682 (2015). https://doi.org/10.1007/s00339-014-8777-5

    Article  CAS  Google Scholar 

  36. M. Xin, J. Sulphur. Chem. 83, 206 (2022). https://doi.org/10.1080/17415993.2021.1998505

    Article  CAS  Google Scholar 

  37. Q. Shen, Y.H. Zhang, Y.J. Fan, Z. Xu, Z.X. Sun, Miner. Eng 144, 106019 (2019). https://doi.org/10.1016/j.mineng.2019.106019

    Article  CAS  Google Scholar 

  38. S. Kar, S. Chaudhuri, Chem. Phys. Lett. 414, 40–46 (2005). https://doi.org/10.1016/j.cplett.2005.08.021

    Article  CAS  Google Scholar 

  39. N. Karar, F. Singh, B.R. Mehta, J. Appl. Phys. 95(2), 656–660 (2004). https://doi.org/10.1063/1.1633347

    Article  CAS  Google Scholar 

  40. O. Ehlert, A. Osvet, M. Batentschuk, A. Winnacker, T. Nann, J. Phys. Chem. B 110, 23175–23178 (2006). https://doi.org/10.1021/jp064570iCCC

    Article  CAS  Google Scholar 

  41. P. Das, P.L. Praveen, Mater. Sci. Eng. 798, 012041 (2020). https://doi.org/10.1088/1757-899X/798/1/012041/meta

    Article  CAS  Google Scholar 

  42. P.L. Praveen, D.P. Ojha, Liq. Cryst. 38, 963–970 (2011). https://doi.org/10.1080/02678292.2011.587548

    Article  CAS  Google Scholar 

  43. P.L. Praveen, D.P. Ojha, Mol. Cryst. Liq. Cryst. 548, 209–219 (2011). https://doi.org/10.1080/15421406.2011.591669

    Article  CAS  Google Scholar 

  44. P.L. Praveen, D.P. Ojha, Mol. Cryst. Liq. Cryst. 557, 206–216 (2012). https://doi.org/10.1080/15421406.2011.652849

    Article  CAS  Google Scholar 

  45. P.L. Praveen, D.P. Ojha, Ph. Transit. 87, 515–525 (2014). https://doi.org/10.1080/01411594.2013.852195

    Article  CAS  Google Scholar 

  46. P.L. Praveen, D.S. Ramakrishna, D.P. Ojha, Mol. Cryst. Liq. Cryst 654, 76–82 (2017). https://doi.org/10.1080/15421406.2016.1262702

    Article  CAS  Google Scholar 

  47. P.L. Praveen, D.P. Ojha, Mol. Cryst. Liq. 606, 75–89 (2015). https://doi.org/10.1080/15421406.2014.915632

    Article  CAS  Google Scholar 

  48. S.R. Yousefi, H.A. Alshamsi, O. Amiri, M.S. Niasari, J. Mol. Liq. 337, 116405 (2021). https://doi.org/10.1016/j.molliq.2021.116405

    Article  CAS  Google Scholar 

  49. R.N. Juine, A. Das, S. Amirthapandian, Mater. Lett. 128, 160–162 (2014). https://doi.org/10.1016/j.matlet.2014.03.104

    Article  CAS  Google Scholar 

  50. A. Mesbahi, H. Ghiasi, Appl. Radiat. Isot. 136, 27 (2018). https://doi.org/10.1016/j.apradiso.2018.02.004

    Article  CAS  Google Scholar 

  51. K. Verdipoor, A. Alemi, A. Mesbahi, Radiat. Phys. Chem. 147, 85 (2018). https://doi.org/10.1016/j.radphyschem.2018.02.017

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Ibb University, Yemen and Ain-Shams University, Cairo, Egypt. The authors did not receive financial support in preparing or writing this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All of the authors mentioned contributed significantly to the development and writing of this article.

Corresponding author

Correspondence to Abduelwhab B. Alwany.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest that may appear to influence the work presented in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alwany, A.B., Youssef, G.M., Saleh, E.E. et al. Effect of lead doping on the structural, optical, and radiation shielding parameters of chemically synthesized ZnS nanoparticles. J Mater Sci: Mater Electron 34, 233 (2023). https://doi.org/10.1007/s10854-022-09647-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09647-y

Navigation