Skip to main content
Log in

Regulating morphology and lithium storage properties of manganese oxalate prepared by optimizing reaction temperature

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Manganese oxalate, a cheap anode material for lithium-ion batteries, suffers from a low actual capacity due to its low conductivity. To improve its electrochemical performance, a strategy based on adjusting the reaction temperature was proposed to controllably synthesize manganese oxalates with various morphologies. When the reaction temperature is lower than the boiling point of ethylene glycol, the growth process of manganese oxalate is dominated by the dissolution. The manganese oxalate crystal maintains its initial cubic shape, but its size decreases. When the reaction temperature is higher than the boiling point of ethylene glycol, the initial cubes gradually change into rods through dissolution–recrystallization-oriented growth processes under the high-temperature/pressure environment. The specific surface area and the pore volume of manganese oxalate increase first and then decrease with the increase in reaction temperature. MnC2O4 prepared at 220 °C is a mesoporous rod-shaped particle with the highest specific surface area and pore volume. This sample delivers a capacity of 972 and 949 mAh/g after 500 cycles at 2 and 5 A/g, respectively, exhibiting high specific capacity and good cyclic stability. These results show that the reaction temperature can control the morphology of manganese oxalate by adjusting the crystal growth process, thereby changing its electrochemical properties. Therefore, the results provided further confirm the effectiveness of the proposed strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. A. Manthiram, Nat. Commun. 11, 1550 (2020). https://doi.org/10.1038/s41467-020-15355-0

    Article  Google Scholar 

  2. A. Tomaszewska, Z. Chu, X. Feng, S. O’Kane, X. Liu, J. Chen, C. Ji, E. Endler, R. Li, L. Liu, Y. Li, S. Zheng, S. Vetterlein, M. Gao, J. Du, M. Parkes, M. Ouyang, M. Marinescu, G. Offer, B. Wu, eTransportation 1, 100011 (2019). https://doi.org/10.1016/j.etran.2019.100011

    Article  Google Scholar 

  3. X. Han, L. Lu, Y. Zheng, X. Feng, Z. Li, J. Li, M. Ouyang, eTransportation 1, 100005 (2019). https://doi.org/10.1016/j.etran.2019.100005

    Article  Google Scholar 

  4. P.G. Bruce, B. Scrosati, J. Tarascon, Angew. Chem. Int. Ed. 47, 2930–2946 (2008). https://doi.org/10.1002/anie.200702505

    Article  CAS  Google Scholar 

  5. A. Manthiram, ACS Cent. Sci. 3, 1063–1069 (2017). https://doi.org/10.1021/acscentsci.7b00288

    Article  CAS  Google Scholar 

  6. T.T. Wei, P. Peng, Y.R. Ji, Y.R. Zhu, T.F. Yi, Y. Xie, J. Energy Chem. 71, 400–410 (2022). https://doi.org/10.1016/j.jechem.2022.04.017

    Article  CAS  Google Scholar 

  7. T.F. Yi, L. Shi, X. Han, F. Wang, Y. Zhu, Y. Xie, Energy Environ. Mater. 4(4), 586–595 (2021). https://doi.org/10.1002/eem2.12140

    Article  CAS  Google Scholar 

  8. T.F. Yi, J. Mei, P.P. Peng, S. Luo, Compos. Part B-Eng. 167, 566–572 (2019). https://doi.org/10.1016/j.compositesb.2019.03.032

    Article  CAS  Google Scholar 

  9. F. Zhang, C. Yang, X. Gao, S. Chen, Y. Hu, H. Guan, Y. Ma, J. Zhang, H. Zhou, L. Qi, ACS Appl. Mater. Interfaces 2017(9), 9620–9629 (2017). https://doi.org/10.1021/acsami.6b15880

    Article  CAS  Google Scholar 

  10. F. Zhang, C. Yang, H. Guan, Y. Hu, C. Jin, C. Jin, H. Zhou, L. Qi, ACS Appl. Energy Mater. 2018(1), 5417–5427 (2018). https://doi.org/10.1021/acsaem.8b01024

    Article  CAS  Google Scholar 

  11. H. Chang, Y.R. Wu, X. Han, T.F. Yi, Energy Mater. 1, 100003 (2021). https://doi.org/10.20517/energymater.2021.02

    Article  Google Scholar 

  12. K. Liu, Y. Liu, D. Lin, A. Pei, C. Yi, Sci. Adv. 4, 9820 (2018). https://doi.org/10.1126/sciadv.aas9820

    Article  CAS  Google Scholar 

  13. Y.L. Sui, J. Zhou, X.W. Wang, L. Wu, S.K. Zhong, Y.G. Li, Mater. Today 42, 117–136 (2021). https://doi.org/10.1016/j.mattod.2020.09.005

    Article  CAS  Google Scholar 

  14. L. Fang, C. Wang, L. Huangfu, N. Bahlawane, H. Tian, Y. Lu, H. Pan, M. Yan, Y. Jiang, Adv. Funct. Mater. 29, 1906680 (2019). https://doi.org/10.1002/adfm.201906680

    Article  CAS  Google Scholar 

  15. N. Li, Q. Li, X. Guo, M. Yuan, H. Pang, Chem. Eng. J. 372, 551–571 (2019). https://doi.org/10.1016/j.cej.2019.04.127

    Article  CAS  Google Scholar 

  16. M.C. López, J.L. Tirado, C. Pérez Vicente, J. Power Sources 227, 65–71 (2013). https://doi.org/10.1016/j.jpowsour.2012.08.100

    Article  CAS  Google Scholar 

  17. K. Zhang, Y. Li, Y. Wang, J. Zhao, X. Chen, Y. Dai, Y. Yao, Chem. Eng. J. 384, 123281 (2020). https://doi.org/10.1016/j.cej.2019.123281

    Article  CAS  Google Scholar 

  18. K. Zhang, R. Xu, R. Wei, Y. Li, Y. Wang, Y. Zhang, Y. Dai, Y. Yao, Mater. Chem. Phys. 243, 122676 (2020). https://doi.org/10.1016/j.matchemphys.2020.122676

    Article  CAS  Google Scholar 

  19. W.A. Ang, Y.L. Cheah, C.L. Wong, R. Prasanth, H.H. Hng, S. Madhavi, J. Phys. Chem. C 117, 16316–16325 (2013). https://doi.org/10.1021/jp404049f

    Article  CAS  Google Scholar 

  20. W.A. Ang, N. Gupta, R. Prasanth, S. Madhavi, ACS Appl. Mater. Interfaces 4, 7011–7019 (2012). https://doi.org/10.1021/am3022653

    Article  CAS  Google Scholar 

  21. Y. Zhang, S. Li, H. Kuai, Y. Long, X. Lv, J. Su, Y. Wen, RSC Adv. 11, 23259–23269 (2021). https://doi.org/10.1039/D1RA03669F

    Article  CAS  Google Scholar 

  22. K. Zhang, D. Cui, X. Huang, F. Liang, G. Gao, T. Song, L. Zhang, Y. Yao, Y. Lei, Chem. Eng. J. 426, 131446 (2021). https://doi.org/10.1016/j.cej.2021.131446

    Article  CAS  Google Scholar 

  23. Y. Zhu, F. Chen, Chem. Rev. 114, 6462–6555 (2014). https://doi.org/10.1021/cr400366s

    Article  CAS  Google Scholar 

  24. G. Yang, S. Park, Materials 12, 1177 (2019). https://doi.org/10.3390/ma12071177

    Article  CAS  Google Scholar 

  25. Q. Zheng, Y. Liu, H. Guo, X. Hua, S. Shi, M. Zuo, Mater. Res. Bull. 98, 155–159 (2018). https://doi.org/10.1016/j.materresbull.2017.10.017

    Article  CAS  Google Scholar 

  26. Z. Qi, Y. Wu, X. Li, Y. Qu, Y. Yang, D. Mei, Ionics 26, 33–42 (2020). https://doi.org/10.1007/s11581-019-03181-4

    Article  CAS  Google Scholar 

  27. W. Kang, Q. Shen, J. Power Sources 238, 203–209 (2013). https://doi.org/10.1016/j.jpowsour.2013.03.087

    Article  CAS  Google Scholar 

  28. W.A.E. Ang, Y.L. Cheah, C.L. Wong, H.H. Hng, S. Madhavi, J. Alloys Compd. 638, 324–333 (2015). https://doi.org/10.1016/j.jallcom.2015.02.203

    Article  CAS  Google Scholar 

  29. F. Feng, W. Kang, F. Yu, H. Zhang, Q. Shen, J. Power Sources 282, 109–117 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.043

    Article  CAS  Google Scholar 

  30. H. Oh, C. Jo, C.S. Yoon, H. Yashiro, S. Kim, S. Passerini, Y. Sun, S. Myung, NPG Asia Mater. 8, e270 (2016). https://doi.org/10.1038/am.2016.59

    Article  CAS  Google Scholar 

  31. Y. Jia, A. Cheng, W. Ke, J. Liu, S. Wang, Y. Zhao, Q. Yang, J. Zhang, Electrochim. Acta 380, 138217 (2021). https://doi.org/10.1016/j.electacta.2021.138217

    Article  CAS  Google Scholar 

  32. S. Dąbrowska, T. Chudoba, J. Wojnarowicz, W. Łojkowski, Crystals 8, 379 (2018). https://doi.org/10.3390/cryst8100379

    Article  CAS  Google Scholar 

  33. S. Cao, W. Zeng, H. Long, H. Zhang, Mater. Lett. 159, 385–388 (2015). https://doi.org/10.1016/j.matlet.2015.07.045

    Article  CAS  Google Scholar 

  34. J. Xu, L. He, H. Liu, T. Han, Y. Wang, C. Zhang, Y. Zhang, Electrochim. Acta 170, 85–91 (2015). https://doi.org/10.1016/j.electacta.2015.04.114

    Article  CAS  Google Scholar 

  35. W.Y. Wu, T.H. Tang, Y. Li, S. Xu, Dalton Trans. 50, 485–489 (2021). https://doi.org/10.1039/D0DT03765F

    Article  CAS  Google Scholar 

  36. T. Pu, J. Li, Y. Jiang, B. Huang, W. Wang, C. Zhao, L. Xie, L. Chen, Dalton Trans. 47, 9241–9249 (2018). https://doi.org/10.1039/C8DT01920G

    Article  CAS  Google Scholar 

  37. M. Muttakin, S. Mitra, K. Thu, K. Ito, B.B. Saha, Int. J. Heat Mass Transf. 122, 795–805 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.107

    Article  CAS  Google Scholar 

  38. K.S. Sing, D.H. Everett, R.A. Haul, Pure Appl. Chem. 57, 603–619 (1985). https://doi.org/10.1351/pac198557040603

    Article  CAS  Google Scholar 

  39. Y. Zhang, Z. Lu, M. Guo, Z. Bai, B. Tang, JOM 68, 2952–2957 (2016). https://doi.org/10.1007/s11837-016-2126-4

    Article  CAS  Google Scholar 

  40. B. León, C.P. Vicente, J.L. Tirado, Solid State Ion. 225, 518–521 (2012). https://doi.org/10.1016/j.ssi.2011.12.012

    Article  CAS  Google Scholar 

  41. M.J. Aragón, B. León, C. Pérez Vicente, J.L. Tirado, Inorg. Chem. 47, 10366–10371 (2008). https://doi.org/10.1021/ic8008927

    Article  CAS  Google Scholar 

  42. M.J. Aragón, B. León, C. Pérez Vicente, J.L. Tirado, A.V. Chadwick, A. Berko, S. Beh, Chem. Mater. 21, 1834–1840 (2009). https://doi.org/10.1021/cm803435p

    Article  CAS  Google Scholar 

  43. X. Wu, J. Guo, M.J. McDonald, S. Li, B. Xu, Y. Yang, Electrochim. Acta 163, 93–101 (2015). https://doi.org/10.1016/j.electacta.2015.02.134

    Article  CAS  Google Scholar 

  44. P. Simon, Y. Gogotsi, B. Dunn, Science 343, 1210–1211 (2014). https://doi.org/10.1126/science.1249625

    Article  CAS  Google Scholar 

  45. X. Pu, D. Zhao, C. Fu, Z. Chen, S. Cao, C. Wang, Y. Cao, Angew. Chem. Int. Ed. 60, 21310–21318 (2021). https://doi.org/10.1002/ange.202104167

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support from the National Natural Science Foundation of China (51864005 and 51564002), the Natural Science Foundation of Guangxi, China (2018GXNSFDA281014), and the College Students' Innovative Entrepreneurial Training Plan of Guangxi University (20220100634).

Funding

The funded was provided by the National Natural Science Foundation of China (Grant No: 51864005).

Author information

Authors and Affiliations

Authors

Contributions

YXH, DDZ, XYH, XPC, and LXL performed the experiments and characterization of materials. LYX analyzed the data and discussed the results. JS wrote the manuscript. YXW conceived and designed the research and wrote the manuscript. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Yan-Xuan Wen.

Ethics declarations

Conflict of interest

This manuscript has not been published or presented elsewhere in part or entirety and is not under consideration by another journal. We have read and understood your journal’s policies, and we believe that neither the manuscript nor the study violates any of these. There is no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, YX., Zeng, DD., Huang, XY. et al. Regulating morphology and lithium storage properties of manganese oxalate prepared by optimizing reaction temperature. J Mater Sci: Mater Electron 34, 198 (2023). https://doi.org/10.1007/s10854-022-09645-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09645-0

Navigation