Skip to main content

Advertisement

Log in

Structural and electrical properties of Ca2+-substituted barium magnesium niobate ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The cost-effective solid-state reaction technique has been used for the synthesis of an environment-friendly Ba1−xCax(Mg1/3Nb2/3)O3 (BCMN) ceramics for x = 0%, 5%, 10%, 15%, 20% to examine thoroughly its structural, morphological, and electrical behavior with raising calcium content. We aim to describe in this article how lead-free dielectrics can provide a path to a more ecologically friendly option in this remarkable material class. The XRD patterns reveal the ceramic to be a hexagonal structure with space group P-3m1, no. 164. An essential set of properties, dielectric and AC impedance, has been examined as a function of frequency and temperature along with room-temperature ferroelectric properties of the ceramics. Temperature-dependent conductivity and activation energy have been performed with an increasing calcium content to understand the role of calcium in BMN ceramics. The results show that dielectric properties can be affected by different calcium concentrations. These dielectrics can work satisfactorily and attain a very high temperature of up to 600 °C. Energy storage with long-term reliability is needed to ensure that capacitors do not need to be oversized. This article provides ultrahigh energy storage efficiency and low loss at room temperature. The highest storage efficiency η% that has been found in these compositions is for 15%; Ca-containing composition is 97.68%. The enhanced dielectric properties along with reduced energy loss have made BCMN a prominent energy storage material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

In addition to the information presented in the manuscript, additional data could be made available to the readers at reasonable request.

References

  1. L. Tan, Q. Sun, Y. Wang, J. Alloys Compd. 836, 155419 (2020). https://doi.org/10.1016/j.jallcom.2020.155419

    Article  CAS  Google Scholar 

  2. X. Wang, C. Meng, Y. Wang, Ceram. Int. 47(20), 28500–28504 (2021). https://doi.org/10.1016/j.ceramint.2021.07.006

    Article  CAS  Google Scholar 

  3. X. Huang, G. Zhao, G. Wang, J.T.S. Irvine, Chem. Sci. 9(15), 3623–3637 (2018). https://doi.org/10.1039/C7SC03920D

    Article  CAS  Google Scholar 

  4. X.-Q. Song, Lu. Wen-Zhong, X.-C. Wang, X.-H. Wang, G.-F. Fan, R. Muhammad, W. Lei, J. Eur. Ceram. Soc. 38(4), 1529–1534 (2018). https://doi.org/10.1016/j.jeurceramsoc.2017.10.053

    Article  CAS  Google Scholar 

  5. F. Galasso, L. Katz, R. Ward, J. Am. Chem. Soc. 81(4), 820–823 (1959). https://doi.org/10.1021/ja01513a018

    Article  CAS  Google Scholar 

  6. F. Galasso, J. Pyle, Inorg. Chem. 2(3), 482–484 (1963). https://doi.org/10.1021/ic50007a013

    Article  CAS  Google Scholar 

  7. L.A. Khalam, H. Sreemoolanathan, R. Ratheesh, P. Mohanan, M.T. Sebastian, Mater. Sci. Eng. 107(3), 264–270 (2004) https://doi.org/10.1016/j.mseb.2003.11.019

  8. J. Li, J. Lv, S. Feng, Z.-M. Qi, R. Han, J. Wang, Mater. Res. Bull. 148, 111656 (2022). https://doi.org/10.1016/j.materresbull.2021.111656

  9. H.-F. Cheng, C.-T. Chia, H.-L. Liu, M.-Y. Chen, Y.-T. Tzeng, I-N. Lin, J. Eur. Ceram. Soc. 27(8–9), 2893–2897 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.11.067

  10. B.C. Sekhar, B. Dhanalakshmi, B. Srinivasa Rao, S. Ramesh, K. Venkata Prasad, P.S.V. Subba Rao, B. Parvatheeswara Rao, Multifunct. Ferroelectric Mater. (2021). https://doi.org/10.5772/intechopen.96154

  11. D. Choudhury, A. Venimadhav, C. Kakarla, K.T. Delaney, P. Sujatha Devi, P. Mondal, R. Nirmala, et al. Appl. Phys. Lett. 96(16), 162903 (2010). https://doi.org/10.1063/1.3379293

  12. Z. Tang, Z. Zhou, Z. Zhang, Sens. Actuators B Chem. 93(1–3), 391–395 (2003). https://doi.org/10.1016/S0925-4005(03)00197-7

    Article  CAS  Google Scholar 

  13. P. Zhang, H. Li, X. Chen, Q. Wen, C. Li, J. Eur. Ceram. Soc. 41(16), 165–170 (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.09.015

    Article  CAS  Google Scholar 

  14. M.T. Sebastian, Elsevier (2010)

  15. M.W. Lufaso, Chem. Mater. 16(11), 2148–2156 (2004). https://doi.org/10.1021/cm049831k

    Article  CAS  Google Scholar 

  16. R.L. Moreira, F.M. Matinaga, A. Dias, Appl. Phys. Lett. 78(4), 428–430 (2001). https://doi.org/10.1063/1.1339254

    Article  CAS  Google Scholar 

  17. A. Dias, V.S.T. Ciminelli, F.M. Matinaga, R.L. Moreira, J. Eur. Ceram. Soc. 21(15), 2739–2744 (2001). https://doi.org/10.1016/S0955-2219(01)00355-7

    Article  CAS  Google Scholar 

  18. A. Dias, R.L. Moreira, J. Appl. Phys. 94(5), 3414–3421 (2003). https://doi.org/10.1063/1.1598634

  19. A. Dias, C.W.A. Paschoal, R.L. Moreira, J. Am. Ceram. Soc. 86(11), 1985–1987 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03597.x

  20. F. Mou, An. Xue, Q. Liu, S. Peng, Y. Wang, E. Cai, S. Wang, J. Mater. Sci.: Mater. Electron. 32(2), 2432–2440 (2021). https://doi.org/10.1007/s10854-020-05009-8

    Article  CAS  Google Scholar 

  21. An. Xue, F. Zeng, Y. Wang, Q. Liu, X. Wang, S. Peng, F. Mou, J. Mater. Sci.: Mater. Electron. 31(11), 8291–8296 (2020). https://doi.org/10.1007/s10854-020-03364-0

    Article  CAS  Google Scholar 

  22. F. Zeng, Q. Liu, Y. Wang, S. Peng, An. Xue, E. Cai, J. Mater. Sci.: Mater. Electron. 29(22), 18978–18988 (2018). https://doi.org/10.1007/s10854-018-0022-0

    Article  CAS  Google Scholar 

  23. F. Zeng, Q. Liu, S. Peng, Y. Wang, E. Cai, An. Xue, S. Zhou, Ceram. Int. 45(1), 1416–1419 (2019). https://doi.org/10.1016/j.ceramint.2018.09.185

    Article  CAS  Google Scholar 

  24. J. Boonlakhorn, J. Prachamon, J. Manyam, S. Krongsuk, P. Thongbai, P. Srepusharawoot, RSC Adv. 11(27), 16396–16403 (2021). https://doi.org/10.1039/D1RA02707G

    Article  CAS  Google Scholar 

  25. H.J. Lee, M.P. Hyun, Y.K. Cho, H. Ryu, Y.W. Song, J.H. Paik, S. Nahm, J.‐D. Byun, J. Am. Ceram. Soc. 83(9), 2267–2272 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01546.x

  26. H. Lin, Xu. Dekang, Lu. Anming Li, Z.Q. Yao, S. Yang, Y. Zhang, Sci. Rep. 7(1), 1–11 (2017). https://doi.org/10.1038/s41598-017-14228-9

    Article  CAS  Google Scholar 

  27. R. Stephenson, J. Cockcroft, R. Cernik, D. Watkin, L.M.D. Cranswick, Acta Crystallogr. Sect. A Found. Crystallogr. 60(a1), s233–s233 (2004). https://doi.org/10.1107/S0108767304095388

  28. C.-L. Diao, C.-H. Wang, N.-N. Luo, Z.-M. Qi, T. Shao, Y.-Y. Wang, J. Lu, F. Shi, X.‐P. Jing, J. Appl. Phys. 115 (11), 114103 (2014). https://doi.org/10.1063/1.4868226

  29. M. Rahimian, N. Ehsani, N. Parvin, H.R. Baharvandi, J. Mater. Process. Technol. 209(14), 5387–5393 (2009). https://doi.org/10.1016/j.jmatprotec.2009.04.007

    Article  CAS  Google Scholar 

  30. S.E. Etuk, S.S. Ekpo, U.W. Robert, O.E. Agbasi, E.-A.A. Effiong, Acta Tech. Jaurinensis 15(2), 91–98 (2022). https://doi.org/10.14513/actatechjaur.00648

  31. R. Tang, C. Jiang, W. Qian, J. Jian, X. Zhang, H. Wang, H. Yang, Sci Rep 5, 13645 (2015). https://doi.org/10.1038/srep13645

    Article  CAS  Google Scholar 

  32. A. Moliton, Applied Electromagnetism and Materials (Springer, Cham, 2007). https://doi.org/10.1007/978-0-387-38064-3

    Book  Google Scholar 

  33. W.H. Tzing, W.H. Tuana, H.L. Lin, Ceram. Int. 25, 425–430 (1999). https://doi.org/10.1016/S0272-8842(98)00058-3

    Article  CAS  Google Scholar 

  34. P. Nayak, T. Badapanda, A.K. Singh, S. Panigrahi, RSC Adv. 7(27), 16319–16331 (2017). https://doi.org/10.1039/C7RA00366H

    Article  CAS  Google Scholar 

  35. G.-F. Zhang, H. Liu, Z. Yao, M. Cao, H. Hao, J. Mater. Sci. Mater. Electron. 26, 2726–2732 (2015). https://doi.org/10.1007/s10854-015-2749-1

    Article  CAS  Google Scholar 

  36. S. Sen, R.N.P. Choudhary, Mater. Chem. Phys. 87(2–3), 256–263 (2004). https://doi.org/10.1016/j.matchemphys.2004.03.005

  37. P.G.R. Achary, S. Behera, R.N.P. Choudhary, S.K. Parida, J. Mater. Sci.: Mater. Electron. 32, 5738–5754 (2021). https://doi.org/10.1007/s10854-021-05295-w

  38. D.C. Sinclair, A.R. West, J. Appl. Phys. 66(8), 3850–3856 (1989). https://doi.org/10.1063/1.344049

    Article  CAS  Google Scholar 

  39. K. Srinivas, A.R. James, J. Appl. Phys. 86(7), 3885–3889 (1999). https://doi.org/10.1063/1.371304

    Article  CAS  Google Scholar 

  40. K.J. Hamam, F. Salman, Appl. Phys. A 125, 621 (2019). https://doi.org/10.1007/s00339-019-2868-2

    Article  CAS  Google Scholar 

  41. Y.-L. Pei, J. He, Fu. Jing-Feng Li, Q.L. Li, W. Pan, C. Barreteau, D. Berardan, N. Dragoe, L.-D. Zhao, NPG Asia Mater. 5(5), e47–e47 (2013). https://doi.org/10.1038/am.2013.15

    Article  CAS  Google Scholar 

  42. B.K. Sonu, E. Sinha, J. Alloys Compd. 860, 158471 (2021). https://doi.org/10.1016/j.jallcom.2020.158471

  43. G. Hu, J. Wang, X. Liu, H. Liu, H. Wang, Xu. Jiwen, L. Yang, C. Zhou, W. Qiu, J. Mater. Sci.: Mater. Electron. 32(17), 22300–22308 (2021). https://doi.org/10.1007/s10854-021-06715-7

    Article  CAS  Google Scholar 

  44. D.K. Kushvaha, B. Tiwari, S.K. Rout, J. Alloys Compd. 829, 154573 (2020). https://doi.org/10.1016/j.jallcom.2020.154573

  45. X. Li, D. Xiaoyan, W. Fei, T. Zhi, Z. Qiming, C. Hao, X.J. Xing, J.Z. Huanfu, J. Zhu, J. Eur. Ceram. Soc. (2022). https://doi.org/10.1016/j.jeurceramsoc.2021.12.028

Download references

Funding

Naincy Kumari acknowledges the financial support from Birla Institute of Technology, Mesra, as an institute research fellow (IRF).

Author information

Authors and Affiliations

Authors

Contributions

NK prepared the materials, collected the data, and conducted the analysis. SKR provided overall guidance and concept development.

Corresponding author

Correspondence to S. K. Rout.

Ethics declarations

Competing interests

There are no relevant financial or non-financial interests to disclose for the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, N., Rout, S.K. Structural and electrical properties of Ca2+-substituted barium magnesium niobate ceramics. J Mater Sci: Mater Electron 34, 205 (2023). https://doi.org/10.1007/s10854-022-09644-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09644-1

Navigation